按条件检索“65,804”条记录

已选条件: 数据来源: SCOPUS × 数据来源: EI ×
导出
  • 排序
  • 显示
IL12A signal enhances efficacy of sorafenib plus NK cells immunotherapy to better suppress HCC progression (2016) Mol Cancer Ther, 15, pp. 731-742; Miura, K., Ishioka, M., Minami, S., Horie, Y., Ohshima, S., Goto, T., Toll-like receptor 4 on macrophage promotes the development of steatohepatitis-related hepatocellular carcinoma in mice (2016) J Biol Chem, 291, pp. 11504-11517; Miura, K., Ohnishi, H., Role of gut microbiota and toll-like receptors in nonalcoholic fatty liver disease (2014) World J Gastroenterol, 20, pp. 7381-7391; Dapito, D.H., Mencin, A., Gwak, G.Y., Pradere, J.P., Jang, M.K., Mederacke, I., Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4 (2012) Cancer Cell, 21, pp. 504-516; Li, W., Xiao, J., Zhou, X., Xu, M., Hu, C., Xu, X., STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma (2015) J Clin Invest, 125, pp. 4239-4254; Uthaya Kumar, D.B., Chen, C.L., Liu, J.C., Feldman, D.E., Sher, L.S., French, S., TLR4 signaling via NAnoG cooperates with STAT3 to activate twist1 and promote formation of tumor-initiating stem-like cells in livers of mice (2016) Gastroenterology, 150, pp. 707-719; Sepehri, Z., Kiani, Z., Kohan, F., Alavian, S.M., Ghavami, S., Toll like receptor 4 and hepatocellular carcinoma; a systematic review (2017) Life Sci, 179, pp. 80-87; Lin, A., Wang, G., Zhao, H., Zhang, Y., Han, Q., Zhang, C., TLR4 signaling promotes a COX-2/PGE2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells (2016) Oncoimmunology, 5, p. e1074376; Shi, G., Wang, C., Zhang, P., Ji, L., Xu, S., Tan, X., Donor polymorphisms of toll-like receptor 4 rs1927914 associated with the risk of hepatocellular carcinoma recurrence following liver transplantation (2017) Arch Med Res, 48, pp. 553-560; Xu, D., Han, Q., Hou, Z., Zhang, C., Zhang, J., MiR-146a negatively regulates NK cell functions via STAT1 signaling (2017) Cell Mol Immunol, 14, pp. 712-720; Lan, P., Zhang, C., Han, Q., Zhang, J., Tian, Z., Therapeutic recovery of hepatitis b virus (HBV)-induced hepatocyte-intrinsic immune defect reverses systemic adaptive immune tolerance (2013) Hepatology, 58, pp. 73-85; Shalini, S., Nikolic, A., Wilson, C.H., Puccini, J., Sladojevic, N., Finnie, J., Caspase-2 deficiency accelerates chemically induced liver cancer in mice (2016) Cell Death Differ, 23, pp. 1727-1736; Wang, Y., Cai, J., Zeng, X., Chen, Y., Yan, W., Ouyang, Y., Downregulation of toll-like receptor 4 induces suppressive effects on hepatitis b virus-related hepatocellular carcinoma via ERK1/2 signaling (2015) BMC Cancer, 15, p. 821; Hartwell, H.J., Petrosky, K.Y., Fox, J.G., Horseman, N.D., Rogers, A.B., Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-myc in mice (2014) Proc Natl Acad Sci U S A, 111, pp. 11455-11460; van de Wijngaart, D.J., Dubbink, H.J., van Royen, M.E., Trapman, J., Jenster, G., Androgen receptor coregulators: Recruitment via the coactivator binding groove (2012) Mol Cell Endocrinol, 352, pp. 57-69; Heemers, H.V., Tindall, D.J., Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex (2007) Endocr Rev, 28, pp. 778-808; Shi, L., Yan, P., Liang, Y., Sun, Y., Shen, J., Zhou, S., Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma (2017) Cell Death Dis, 8, p. e3171; Shi, L., Lin, H., Li, G., Sun, Y., Shen, J., Xu, J., Cisplatin enhances NK cells immunotherapy efficacy to suppress HCC progression via altering the androgen receptor (AR)-ULBP2 signals (2016) Cancer Lett, 373, pp. 45-56; Jiang, X., Kanda, T., Nakamoto, S., Miyamura, T., Wu, S., Yokosuka, O., Involvement of androgen receptor and glucose-regulated protein 78 kda in human hepatocarcinogenesis (2014) Exp Cell Res, 323, pp. 326-336; Ngo, H.K.C., Kim, D.H., Cha, Y.N., Na, H.K., Surh, Y.J., Nrf2 mutagenic activation drives hepatocarcinogenesis (2017) Cancer Res, 77, pp. 4797-4808; Lin, S.J., Chou, F.J., Li, L., Lin, C.Y., Yeh, S., Chang, C., Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7) (2017) Cancer Lett, 398, pp. 62-69; Cheng, M.A., Chou, F.J., Wang, K., Yang, R., Ding, J., Zhang, Q., Androgen receptor (AR) degradation enhancer ASC-J9((R)) in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth (2018) Cancer Lett, 417, pp. 182-191 [format_title_en_publication_en_pub_year] => 6f56bdad5a2e3529eb4394694f4b5f1e456480166 [abstract_en] => Background: Androgen receptor (AR) has a role in regulating malignancies and gender disparities in hepatocellular carcinoma (HCC). Recently, TLR4 activation is demonstrated to be required for HCC progression; however, whether and how TLR4 interacts with AR is largely unknown.; Methods: The tumorigenesis was detected in female and male mice induced by DEN/CCL4, then TLR4 and AR signals were detected in liver tissues by qPCR and FACS. The proliferation, colony formation and migration of HCC cell treated with TLR4 agonist LPS, or/and androgen DHT were evaluated in vitro. Furthermore, the expression of TLR4 and AR was detected by IHC in tissue microarray of HCC, and correlation of AR and TLR4 was defined.; Results: Male mice are more susceptible to develop HCC than female mice. Meanwhile, we found baseline TLR4 levels were higher in male mice than in female mice. AR expression in male mice was increased by treatment with DEN/CCL4. And, AR was constitutively expressed in human HCC cell lines. Dihydrotestosterone (DHT) stimulated TLR4 expression in both HepG2 and HepG2 2.15 cells, which could be blocked by silencing AR. On the other hand, treatment with LPS stimulated AR expression, but it was blocked by treatment with TLR4 antagonist and in cells deficient for TLR4. DHT treatment exacerbated TLR4-induced cellular proliferation, colony formation, migration, and invasion of HepG2 cells. The positive relationship between AR and TLR4 was confirmed in human HCC samples.; Conclusions: DHT-AR-TLR4 signaling enhances the development of HCC cells and facilitates their migration and invasion, demonstrating a mechanism underlying gender disparity in HCC. [scopus_id] => 55416640400;57213836522;57204707893;36018041700; [from_id] => 76,73 [cauthor_ad] => [Zhang, J]Shandong Univ, Sch Pharmaceut Sci, Inst Immunopharmaceut Sci, Jinan 250012, Shandong, Peoples R China. [hx_id] => 2378,2371 [doi] => 10.7150/jca.30682 [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [format_issn_issue_page_pub_year] => 1673065a8cc6ffc1db822699bcaaa4e0-1925113239 [title_en] => Androgen Receptor (AR)-TLR4 Crosstalk Mediates Gender Disparities in Hepatocellular Carcinoma Incidence and Progression [index_keyword] => androgen receptor; androstanolone; carbon tetrachloride; lipopolysaccharide; messenger RNA; toll like receptor 4; animal cell; animal experiment; animal model; animal tissue; Article; cancer growth; cancer incidence; carcinogenesis; cell invasion; cell migration; cell proliferation; colony formation; controlled study; female; fluorescence activated cell sorting; human; human tissue; immunofluorescence test; liver cell; liver cell carcinoma; liver tissue; male; mouse; nonhuman; protein expression; real time polymerase chain reaction; sex difference; tissue microarray; Western blotting [volume] => 11 [source_type] => 351 [pub_year] => 2020 [keyword_en] => AR; Gender bias; TLR4; Hepatocellular Carcinoma [article_id] => 819421,812476 [begin_page] => 1094 [hints] => 0 [publisher] => IVYSPRING INT PUBL [substance] => androstanolone, 521-18-6; carbon tetrachloride, 56-23-5; toll like receptor 4, 203811-83-0 [language] => English [issue] => 5 [issn] => 1837-9664 [batch] => 3422,3424 [publication_en] => JOURNAL OF CANCER [email] => zhangj65@sdu.edu.cn [sys_update_time] => 2020-03-13 09:56:09 [format_title_en_issn_pub_year] => d6e8382dbb08ac734048c1de2d619426150854751 [publication_iso] => J. Cancer [SYS_TAG] => 3 [end_page] => 1103 [page] => 1094-1103 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [cite_wos] => 0 [check_3Y] => 0 [delivery_No] => JW1OU [format_title] => [author_fn] => Han, Qiuju; Yang, Dan; Yin, Chunlai; Zhang, Jian [pages] => 10 [publication_29] => J CANCER [open_type] => DOAJ Gold, Green Published [pubmedID] => 31956356 [publication_type] => J [get_data] => 2020-03-06 [format_publication_cn] => [keyword_plu] => RESISTANT PROSTATE-CANCER; NK CELLS IMMUNOTHERAPY; HEPATITIS-B-VIRUS; ACTIVATION; HCC; COREGULATORS; MICROBIOTA; PROMOTES; EFFICACY [fund_ab] => This work was supported Shandong Provincial Key Research and Development; Program [grant number 2017GSF18159] and Shandong Provincial Natural; Science Foundation, China [grant number ZR2017BH029] and the Fundamental; Research Fund of Shandong University (2017JC004). [format_title_en] => 81ad23dd8726890242e9d6dabf51d327231092549 [publisher_city] => LAKE HAVEN [cauthor_order] => 4 [reference_No] => 34 [cite_awos] => 0 [wos_No] => WOS:000502829400011 [sys_priority_field] => 73 [format_wos_No] => 7a35e2d1c7d068cb8a18bd99f6a169d0-1232514087 [wos_sub] => Oncology [research_area] => Oncology [cauthor_back] => Zhang, J [check_180] => 0 [publisher_ad] => PO BOX 4546, LAKE HAVEN, NSW 2263, AUSTRALIA [format_publication_en] => dad2f4de504f5b4b9d946e945cae5e5c1034412683 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => journalofcancer [jl_country] => 中国 [jl_keyword_en] => ar,tlr4,genderbias,hepatocellularcarcinoma [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => ivyspringintpubl [company_id] => 0,174 [author_id] => 21049,25453,25452,25457,25456,25455,25445,25446,25447 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 韩秋菊 [irtag] => 7 [t_index] => 0 [person_id] => 21049 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张健 [irtag] => 7 [t_index] => 4 [person_id] => 25457 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张剑 [irtag] => 7 [t_index] => 4 [person_id] => 25453 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张健 [irtag] => 7 [t_index] => 4 [person_id] => 25455 ) [4] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张健 [irtag] => 7 [t_index] => 4 [person_id] => 25456 ) [5] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张剑 [irtag] => 7 [t_index] => 4 [person_id] => 25452 ) [6] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张嘉宁 [irtag] => 7 [t_index] => 4 [person_id] => 25445 ) [7] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张建 [irtag] => 7 [t_index] => 4 [person_id] => 25446 ) [8] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张建 [irtag] => 7 [t_index] => 4 [person_id] => 25447 ) ) [sys_subject_sort] => 0 [college_parent_id] => 174 [company_test] => Array [id] => RAA003ABe-eYmRww6g3I [tags] => 0 ) [9] => Array ( [cauthor] => Zhang, Ya-Nan(nn8210@126.com) [issn] => 0013-4686 [school_id] => 117 [controlled_terms] => Efficiency - Electron transport properties - II-VI semiconductors - Metal nanoparticles - Nanostructured materials - Organometallics - Perovskite - Perovskite solar cells - Zinc oxide - ZnO nanoparticles [batch2] => 15 [hb_batch] => 3418 [ei_No] => 20194807739516 [tag] => 0 [author_en] => Zhang, YN; Li, B; Fu, L; Li, Q; Yin, LW [sys_level_num] => 15_8 [abstract_en] => We adopt Metal-Organic-Framework (MOF)-derived zinc oxide (ZnO) as electron extraction material for hybrid cationic perovskite solar cells for the first time, breaking the prevailing paradigm of using oxides nanoparticle as electron extraction layer. MOF-derived ZnO with a polyhedral morphology and abundant internal porous structure can increase light harvesting ability and optimize the interfacial contact with perovskite. In contrast to conventional ZnO nanoparticles, the introduction of MOF-derived ZnO will achieve more efficient electron extraction, reduction of trapped state density and lower electron-hole recombination probability, thus significantly increase the fill factor and short-circuit current density of the cells. MOF-derived ZnO based perovskite solar cells exhibit a champion power conversion efficiency of 18.1% coupled with improved fill factor of 0.74 and short-circuit current density of 22.1 mA cm(-2). Simultaneously, there is almost no hysteresis effect, and performance attenuation of the device in the ambient atmosphere over time can be suppressed. The performance improvement of perovskite solar cells stems from improved light harvesting efficiency in a wide wavelength range, as well as enhanced carrier extraction efficiency resulted from the increase of interface area between MOF-derived ZnO and perovskites. (C) 2019 Elsevier Ltd. All rights reserved. [format_doi] => edd024814f9af52944ffc180aeb00390-1921312656 [sys_update_time] => 2020-03-13 09:40:17 [cauthor_back] => Zhang, YaNan@@@Zhang, YN@@@Yin, LW [format_title_en_publication_en_pub_year] => cdde4c68c7e053b8ec60b595670907eb-1663643379 [classification_No] => 482.2 Minerals - 761 Nanotechnology - 802.3 Chemical Operations - 804.1 Organic Compounds - 804.2 Inorganic Compounds - 913.1 Production Engineering [document_No] => 135280 [main_eword] => Extraction [format_ei_No] => 77390d46d3eea81521ecee6cd51f3bb195642642 [from_id] => 76,74,73 [email] => nn8210@126.com; yinlw@sdu.edu.cn [classification_pub] => ELCAA [datebase] => Scopus [numerical_index] => Percentage 1.81e+01% [sys_jg_type] => 11,3 [title_en] => MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells [volume] => 330 [author_fn] => Zhang, Ya-Nan; Li, Bo; Fu, Lin; Li, Qun; Yin, Long-Wei [pub_year] => 2020 [pub_date] => JAN 10 [hints] => 0 [publisher] => PERGAMON-ELSEVIER SCIENCE LTD [doi] => 10.1016/j.electacta.2019.135280 [language] => English [source_type] => 351 [reference_No] => 46 [batch] => 3422,3418,3424 [publication_en] => ELECTROCHIMICA ACTA [hx_id] => 2376,2378,2371 [author_in] => [Zhang, Ya-Nan; Li, Qun] Taishan Univ, Coll Chem & Chem Engn, Tai An 271021, Shandong, Peoples R China.@@@ [Zhang, Ya-Nan; Li, Bo; Fu, Lin; Yin, Long-Wei] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China. [format_title_en_issn_pub_year] => bc86e680b5c478f144d6c97be47b21b5-47727519 [article_id] => 813059,809060,814471 [cauthor_order] => 1,1,5 [uncontrolled_terms] => Electron extraction - Electron transport layers - Electron-hole recombination - Interfacial contact - Light-harvesting - Metal organic framework - Polyhedral morphologies - Power conversion efficiencies [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [fund_No] => National Nature Science Foundation of ChinaNational Natural Science; Foundation of China [51702228, 51872171]; Shandong Province Natural; Science FoundationNatural Science Foundation of Shandong Province; [ZR2017BEM014, ZR201801290005]; Tai\'an Science and Technology; Development Plan [2018GX0075]; Talent Introduction Project of Taishan; University [Y-01-2018017]; Shandong Province Higher Educational Science; and Technology Program [J17KA023] [index_keyword] => Efficiency; Electron transport properties; II-VI semiconductors; Metal nanoparticles; Nanostructured materials; Organometallics; Perovskite; Perovskite solar cells; Zinc oxide; ZnO nanoparticles; Electron extraction; Electron transport layers; Electron-hole recombination; Interfacial contact; Light-harvesting; Metal organic framework; Polyhedral morphologies; Power conversion efficiencies; Extraction [format_title] => [reference] => Zhou, T., Wang, M., Zang, Z., Fang, L., Stable dynamics performance and high efficiency of ABX3 -type super-alkali perovskites first obtained by introducing H5O2 cation (2019) Adv. Energy Mater., p. 1900664; Miyasaka, T., Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices (2015) Chem. Lett., 44, pp. 720-729; Snaith, H.J., Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells (2013) J. Phys. Chem. Lett., 4, pp. 3623-3630; Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites (2012) Science, 338, pp. 643-647; Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells (2014) Nat. Mater., 13, pp. 897-903; Mahmood, K., Swain, B.S., Amassian, A., Double-layered ZnO nanostructures for efficient perovskite solar cells (2014) Nanoscale, 6, pp. 14674-14678; Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, G., ZnO Nanostructures for dye-sensitized solar cells (2009) Adv. Mater., 21, pp. 4087-4108; Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications (2004) J. Phys. Condens. Matter, 16, pp. R829-R858; Liu, H., Huang, Z., Wei, S., Zheng, L., Xiao, L., Gong, Q., Nano-structured electron transporting materials for perovskite solar cells (2016) Nanoscale, 8, pp. 6209-6221; Zhang, P., Wu, J., Zhang, T., Wang, Y., Liu, D., Chen, H., Ji, L., Li, S., Perovskite solar cells with ZnO electron-transporting materials (2018) Adv. Mater., 30, p. 1703737; Ryu, U., Jee, S., Park, J.S., Han, I.K., Lee, J.H., Park, M., Choi, K.M., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells (2018) ACS Nano, 12, pp. 4968-4975; Liu, D.Y., Kelly, T.L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques (2014) Nat. Photonics, 8, pp. 133-138; Song, J., Hu, W., Wang, X.-F., Chen, G., Tian, W., Miyasaka, T., HC(NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells (2016) J. Mater. Chem., 4, p. 8435; Ginting, R.T., Jung, E.-S., Jeon, M.-K., Jin, W.-Y., Song, M., Kang, J.-W., Low-temperature operation of perovskite solar cells: with efficiency improvement and hysteresis-less (2016) Nano Energy, 27, pp. 569-576; Yang, J., Siempelkamp, B.D., Mosconi, E., Angelis, F.D., Kelly, T.L., Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO (2015) Chem. Mater., 27, pp. 4229-4236; Cheng, Y., Yang, Q.D., Xiao, J., Xue, Q., Li, H.-W., Guan, Z., Yip, H.L., Tsang, S.W., Decomposition of organometal halide perovskite films on zinc oxide nanoparticles (2015) ACS Appl. Mater. Interfaces, 7, pp. 19986-19993; Zhang, P., Wu, J., Wang, Y., Sarvari, H., Liu, D., Chen, Z.D., Li, S., Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition (2017) J. Mater. Chem., 5, pp. 17368-17378; Kim, H.-S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E.J., Park, N.-G., Bisquert, J., Mechanism of carrier accumulation in perovskite thin-absorber solar cells (2013) Nat. Commun., 4, p. 2242; Sun, Y., Seo, J.H., Takacs, C.J., Seifter, J., Heeger, A.J., Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer (2011) Adv. Mater., 23, pp. 1679-1683; Ahmad, M., Ahmed, E., Zhang, Y., Khalid, N., Xu, J., Ullah, M., Hong, Z., Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis (2013) Curr. Appl. Phys., 13, pp. 697-704; Zhang, R., Fei, C., Li, B., Fu, H., Tian, J., Cao, G., Continuous size tuning of monodispersed ZnO nanoparticles and its size effect on the performance of perovskite solar cells (2017) ACS Appl. Mater. Interfaces, 9, pp. 9785-9794; Tang, J.-F., Tseng, Z.-L., Chen, L.-C., Chu, S.-Y., ZnO nanowalls grown at low-temperature for electron collection in high-efficiency perovskite solar cells (2016) Sol. Energy Mater. Sol. Cells, 154, pp. 18-22; Ryu, U., Jee, S., Park, J., Han, I.K., Lee, J.H., Park, M., Choi, K.M., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells (2018) ACS Nano, 12, pp. 4968-4975; Chang, T.-H., Kung, C.-W., Chen, H.-W., Huang, T.-Y., Kao, S.-Y., Lu, H.-C., Lee, M.-H., Ho, K.-C., Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals (2015) Adv. Mater., 27, pp. 7229-7235; Sung, S.D., Ojha, D.P., You, J.S., Lee, J., Kim, J., Lee, W.I., 50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells (2015) Nanoscale, 7, pp. 8898-8906; Moon, B.C., Park, J.H., Lee, D.K., Tsvetkov, N., Ock, I., Choi, K.M., Kang, J.K., Broadband light absorption and efficient charge separation using a light scattering layer with mixed cavities for high-performance perovskite photovoltaic cells with stability (2017) Small, 13, p. 1700418; Wu, W.-Q., Huang, F., Chen, D., Cheng, Y.-B., Caruso, R.A., Thin Films of Dendritic anatase titania nanowires enable effective hole-blocking and efficient light-harvesting for high-performance mesoscopic perovskite solar cells (2015) Adv. Funct. Mater., 25, pp. 3264-3272; Jang, S., Yoon, J., Ha, K., Ki, M., Kim, D., Kim, S.M., Kang, S.M., Choi, M., Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells (2016) Nano Energy, 22, pp. 499-506; Yang, I.S., You, J.S., Sung, S.D., Chung, C.W., Kim, J., Leen, W.I., Novel spherical TiO2 aggregates with diameter of 100 nm for efficient mesoscopic perovskite solar cells (2016) Nano Energy, 20, pp. 272-282; Li, Z., Li, C., Ge, X., Ma, J., Zhang, Z., Li, Q., Wang, C., Yin, L., Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries (2016) Nano Energy, 23, pp. 15-26; Li, Q., Yin, L., Li, Z., Wang, X., Qi, Y., Ma, J., Copper doped hollow structured manganese oxide mesocrystals with controlled phase structure and morphology as anode materials for lithium ion battery with improved electrochemical performance (2013) ACS Appl. Mater. Interfaces, 5, pp. 10975-10984; Kang, S.M., Jang, S., Lee, J., Yoon, J., Yoo, D., Lee, J., Choi, M., Park, N., Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells (2016) Small, p. 201600428; You, J.B., Meng, L., Song, T.B., Guo, T.F., Yang, Y., Chang, W.H., Hong, Z.R., Yang, Y., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers (2016) Nat. Nanotechnol., 11, pp. 75-81; Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells (2014) Nat. Commun., 5, p. 5784; Liang, P.W., Chueh, C.C., Williams, S.T., Jen, A.K.Y., Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells (2015) Adv. Energy Mater., 5, p. 1402321; Cao, J., Liu, Y.M., Jing, X.J., Yin, J., Li, J., Xu, B., Tan, Y.Z., Zheng, N.F., Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells (2015) J. Am. Chem. Soc., 137, pp. 10914-10917; Gonzalez-Pedro, V., Juarez-Perez, E.J., Arsyad, W.-S., Barea, E.M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., General working principles of CH3NH3PbX3 perovskite solar cells (2014) Nano Lett., 14, pp. 888-893; Laban, W.A., Etgar, L., Depleted hole conductor-free lead halide iodide heterojunction solar cells (2013) Energy Environ. Sci., 6, pp. 3249-3253; Yadav, P., Dar, M.I., Arora, N., Alharbi, E.A., Giordano, F., Zakeeruddin, S.M., Grätzel, M., The role of rubidium in multiple-cation- based high-efficiency perovskite solar cells (2017) Adv. Mater., 29, p. 1701077; Yang, G., Wang, C., Lei, H., Zheng, X., Qin, P., Xiong, L., Zhao, X., Fang, G., Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement (2017) J. Mater. Chem. A., 5, pp. 1658-1666; Niu, T., Lu, J., Munir, R., Li, J., Barrit, D., Zhang, X., Hu, H., Liu, S., Stable high-performance perovskite solar cells via grain boundary passivation (2018) Adv. Mater., p. 1706576; Bube, R.H., Trap density determination by space-charge-limited currents (1962) J. Appl. Phys., 33, p. 1733; Yang, D., Zhou, X., Yang, R., Yang, Z., Yu, W., Wang, X., Li, C., Chang, R.P.H., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells (2016) Energy Environ. Sci., 9, pp. 3071-3078; Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., Snaith, H.J., Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells (2014) Adv. Funct. Mater., 24, pp. 151-157; Kim, H.S., Lee, J.W., Yantara, N., Boix, P.P., Kulkarni, S.A., Mhaisalkar, S., Gratzel, M., Park, N.G., High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 Nanorod and CH3NH3PbI3 perovskite sensitizer (2013) Nano Lett., 13, pp. 2412-2417; Song, J., Liu, L., Wang, X., Chen, G., Tian, W., Miyasaka, T., Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber (2017) J. Mater. Chem., 5, pp. 13439-13447; An, Q., Fassl, P., Hofstetter, Y.J., Becker-Koch, D., Bausch, A., Hopkinson, P.E., Vaynzof, Y., High performance planar perovskite solar cells by ZnO electron transport layer engineering (2017) Nano Energy, 39, pp. 400-408 [scopus_id] => 57191041374;57188640408;57201299371;57211305406;57204699375; [format_scopus_No] => d4f8cbdc61adfa5eb90a79fe4d2ec32c-684350980 [keyword_en] => MOF-Derived ZnO; Perovskite solar cells; Electron extraction; Light; harvesting [format_publication_cn] => [publication_iso] => Electrochim. Acta [format_title_en] => 6dd5862c438dfdec3b334c242395e344-1433422047 [sys_priority_field] => 73 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075368717&doi=10.1016%2fj.electacta.2019.135280&partnerID=40&md5=44103fdb0b2a9c678426f92a4cb32e23 [standard_in] => College of Chemistry and Chemical Engineering, Taishan University, Tai\'an, 271021, China; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China [scopus_No] => 2-s2.0-85075368717 [format_publication_en] => 25bcaeab36355738c969ca0dd04ccab5-570936206 [cite_wos] => 0 [check_3Y] => 20 [delivery_No] => JU1WV [cauthor_ad] => [Zhang, YN; Yin, LW]Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China. [pages] => 8 [publication_29] => ELECTROCHIM ACTA [eissn] => 1873-3859 [publication_type] => J [get_data] => 2020-03-06 [keyword_plu] => HIGHLY EFFICIENT; LEAD HALIDE; THIN-FILMS; PERFORMANCE; NANOSTRUCTURES; MORPHOLOGY; NM [fund_ab] => This work was supported by the National Nature Science Foundation of; China (No.: 51702228, 51872171), Shandong Province Natural Science; Foundation (ZR2017BEM014, ZR201801290005), Tai\'an Science and Technology; Development Plan (2018GX0075), the Talent Introduction Project of; Taishan University (Y-01-2018017) and Shandong Province Higher; Educational Science and Technology Program (J17KA023). [publisher_city] => OXFORD [cite_awos] => 0 [wos_No] => WOS:000501468400062 [format_wos_No] => d9f32e8c105927b8155a01b674c6b2b91342167549 [wos_sub] => Electrochemistry [research_area] => Electrochemistry [check_180] => 20 [publisher_ad] => THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => electrochimicaacta [jl_country] => 中国 [jl_keyword_en] => mofderivedzno,harvesting,light,perovskitesolarcells,electronextraction [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => pergamonelsevierscienceltd [company_id] => 0,143 [author_id] => 25104,21610,21608,21609 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 李波 [irtag] => 7 [t_index] => 0 [person_id] => 21609 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 李博 [irtag] => 7 [t_index] => 0 [person_id] => 21610 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 李波 [irtag] => 7 [t_index] => 0 [person_id] => 21608 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 尹龙卫 [irtag] => 7 [t_index] => 5 [person_id] => 25104 ) ) [sys_subject_sort] => 0 [college_parent_id] => 143 [company_test] => Array [id] => FgA403ABe-eYmRwwBisB [tags] => 0 ) [10] => Array ( [standard_in] => School of Software, Shandong University, Jinan, Shandong, 250101, China; State Grid Anhui Electric Power Company, Hefei, Anhui, 230061, China; First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China [cauthor] => Huang, Y(huang_yan74@163.com) [school_id] => 117 [scopus_No] => 2-s2.0-85079398959 [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079398959&doi=10.1155%2f2020%2f1782531&partnerID=40&md5=1a78a4b5021899c45d01c40374e5b15b [tag] => 0 [author_en] => Sun, LM; Kong, Q; Huang, Y; Yang, JS; Wang, SS; Zou, RQ; Yin, YL; Peng, JL [format_scopus_No] => 36dbaad2f23b5de8e73be1358cb892a5462395728 [format_doi] => d1c5b901831682136764b3ea5270d911-1794586774 [sys_update_time] => 2020-03-13 09:56:09 [fund_No] => National Natural Science Foundation of ChinaNational Natural Science; Foundation of China [61872398] [reference] => Subburaj, K., Ravi, B., Agarwal, M., Automated identification of anatomical landmarks on 3d bone models reconstructed from CT scan images (2009) Computerized Medical Imaging and Graphics, 33 (5), pp. 359-368. , 2-s2.0-67349129682; Krcah, M., Székely, G., Blanc, R., Fully Automatic and Fast Segmentation of the Femur Bone from 3d-ct Images with No Shape Prior, pp. 2087-2090. , Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011 March 2011 Chicago, IL, USA 2-s2.0-80055053887; Jang, S.-W., Seo, Y.-J., Yoo, Y.-S., Kim, Y.S., Computed tomographic image analysis based on fem performance comparison of segmentation on knee joint reconstruction (2014) The Scientific World Journal, 2014 (2). , 235858 2-s2.0-84916613034; Wu, D., Sofka, M., Birkbeck, N., Zhou, S.K., Segmentation of Multiple Knee Bones from CT for Orthopedic Knee Surgery Planning, pp. 372-380. , Proceedings of the 17th International Conference Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014 September 2014 Boston, MA, USA 2-s2.0-84909632803; Mezlini, H., Youssef, R., Bouhadoun, H., High Resolution Volume Quantification of the Knee Joint Space Based on A Semi-automatic Segmentation of Computed Tomography Images, pp. 157-161. , Proceedings of the International Conference on Systems, Signals and Image Processing, IWSSIP 2015 September 2015 London, UK 2-s2.0-84961718544; Kong, Q., Wang, S., Yang, J., Automatic Measurement on CT Images for Patella Dislocation Diagnosis, pp. 1130-1134. , Proceedings of the IEEE International Conference on Image Processing, ICIP 2013 September 2013 Melbourne, Australia 2-s2.0-84897771891; Zhang, Y.J., A survey on evaluation methods for image segmentation (1996) Pattern Recognition, 29 (8), pp. 1335-1346. , 2-s2.0-0030216623; Pal, N.R., Pal, S.K., A review on image segmentation techniques (1993) Pattern Recognition, 26 (9), pp. 1277-1294. , 2-s2.0-0027658896; Cuevas, E., Zaldivar, D., Cisneros, M.A.P., A novel multi-threshold segmentation approach based on differential evolution optimization (2010) Expert Systems with Applications, 37 (7), pp. 5265-5271. , 2-s2.0-77950187403; Soille, P., (2003) Morphological Image Analysis-Principles and Applications, , Berlin, Germany Springer Science & Business Media 2-s2.0-0034799952; Zana, F., Klein, J., Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation (2001) IEEE Transactions on Image Processing, 10 (7), pp. 1010-1019. , 2-s2.0-0035397820; Canny, J.F., A computational approach to edge detection (1986) IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (6), pp. 679-698. , 2-s2.0-0022808786; Ronfard, R., Region-based strategies for active contour models (1994) International Journal of Computer Vision, 13 (2), pp. 229-251. , 2-s2.0-0028518095; Derraz, F., Taleb-Ahmed, A., Chikh, A., Bereksi-Reguig, F., Improved Edge Map of Geometrical Active Contour Model Based on Coupling to Anisotropic Diffusion Filtering, pp. 1097-1101. , Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2007 2007 Boston, MA, USA Harvard Medical School 2-s2.0-47649089069; Fu, Y., Cao, Z., Pi, Y., Multi-region segmentation of sar image by a multiphase level set approach (2008) Journal of Electronics, 25 (4), pp. 556-561. , 2-s2.0-48249116758; Li, C., Gore, J.C., Davatzikos, C., Multiplicative intrinsic component optimization (mico) for mri bias field estimation and tissue segmentation (2014) Magnetic Resonance Imaging, 32 (7), pp. 913-923. , 2-s2.0-84904068391; Chan, T.F., Vese, L.A., Active contours without edges (2001) IEEE Transactions on Image Processing, 10 (2), pp. 266-277. , 2-s2.0-0035248865; Li, C., Kao, C., Gore, J.C., Ding, Z., Minimization of region-scalable fitting energy for image segmentation (2008) IEEE Transactions on Image Processing, 17 (10), pp. 1940-1949. , 2-s2.0-52649131914; Wang, L., He, L., Mishra, A., Li, C., Active contours driven by local Gaussian distribution fitting energy (2009) Signal Processing, 89 (12), pp. 2435-2447. , 2-s2.0-67651092103; Zhu, S., Bu, X., Zhou, Q., A novel edge preserving active contour model using guided filter and harmonic surface function for infrared image segmentation (2018) IEEE Access, 6, pp. 5493-5510. , 2-s2.0-85038389948; Li, C., Huang, R., Ding, Z., Gatenby, C., Metaxas, D.N., Gore, J.C., A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI (2011) IEEE Transactions on Image Processing, 20 (7), pp. 2007-2016. , 2-s2.0-79959576791; Zhang, K., Song, H., Zhang, L., Active contours driven by local image fitting energy (2010) Pattern Recognition, 43 (4), pp. 1199-1206. , 2-s2.0-74449089236; Shiffman, S., Rubin, G.D., Napel, S., Medical image segmentation using analysis of isolable-contour maps (2000) IEEE Transactions on Medical Imaging, 19 (11), pp. 1064-1074. , 2-s2.0-0034310511; Kang, Y., Engelke, K., A new accurate and precise 3-d segmentation method for skeletal structures in volumetric ct data (2003) IEEE Transactions on Medical Imaging, 22 (5), p. 586. , K. W. A. 2-s2.0-0038782206; Fripp, J., Crozier, S., Warfield, S.K., Ourselin, S., Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee (2010) IEEE Transactions on Medical Imaging, 29 (1), pp. 55-64. , 2-s2.0-73849129947; Rueda, S., Fathima, S., Knight, C.L., Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: A grand challenge (2014) IEEE Transactions on Medical Imaging, 33 (4), pp. 797-813. , 2-s2.0-84897981539; Du, X., Zhang, W., Zhang, H., Deep regression segmentation for cardiac bi-ventricle MR images (2018) IEEE Access, 6, pp. 3828-3838. , 2-s2.0-85040047914; Soomro, T.A., Khan, T.M., Khan, M.A.U., Gao, J., Paul, M., Zheng, L., Impact of ICA-based image enhancement technique on retinal blood vessels segmentation (2018) IEEE Access, 6, pp. 3524-3538. , 2-s2.0-85040907705; Ren, X., Zheng, Y., Zhao, Y., Drusen segmentation from retinal images via supervised feature learning (2018) IEEE Access, 6, pp. 2952-2961. , 2-s2.0-85040051881; Du, C., Gao, S., Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network (2017) IEEE Access, 5, pp. 15750-15761. , 2-s2.0-85028919325; Punithakumar, K., Boulanger, P., Noga, M., A GPU-accelerated deformable image registration algorithm with applications to right ventricular segmentation (2017) IEEE Access, 5, pp. 20374-20382. , 2-s2.0-85030790975; Hawkins, S.H., Korecki, J.N., Balagurunathan, Y., Predicting outcomes of nonsmall cell lung cancer using CT image features (2014) IEEE Access, 2, pp. 1418-1426. , 2-s2.0-84923319145; Truc, P.T.H., Kim, T., Lee, S., Lee, Y., A study on the feasibility of active contours on automatic CT bone segmentation (2010) Journal of Digital Imaging, 23 (6), pp. 793-805. , 2-s2.0-78650608319; Ma, Z., Tavares, J.M.R.S., Jorge, R.N., Mascarenhas, T., A review of algorithms for medical image segmentation and their applications to the female pelvic cavity (2010) Computer Methods in Biomechanics and Biomedical Engineering, 13 (2), pp. 235-246. , 2-s2.0-77954713643; Ahmed, M.N., Yamany, S.M., Mohamed, N.A., Farag, A.A., Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data (2002) IEEE Transactions on Medical Imaging, 21 (3), pp. 193-199. , 2-s2.0-0036489378; Yao, J., Bliton, J., Summers, R.M., Automatic segmentation and measurement of pleural effusions on CT (2013) IEEE Transactions on Biomedical Engineering, 60 (7), pp. 1834-1840. , 2-s2.0-84879942440 [format_title_en_publication_en_pub_year] => a226e494d9a40a1ad1737334444a10ab1378322039 [abstract_en] => Traditionally, for diagnosing patellar dislocation, clinicians make manual geometric measurements on computerized tomography (CT) images taken in the knee area, which is often complex and error-prone. Therefore, we develop a prototype CAD system for automatic measurement and diagnosis. We firstly segment the patella and the femur regions on the CT images and then measure two geometric quantities, patellar tilt angle (PTA), and patellar lateral shift (PLS) automatically on the segmentation results, which are finally used to assist in diagnoses. The proposed quantities are proved valid and the proposed algorithms are proved effective by experiments. [scopus_id] => 57214882697;56103969300;57214880764;57212326631;56104118800;56104051700;8981026100;7401958611; [from_id] => 76,73 [cauthor_ad] => [Huang, Y]Shandong Univ, Sch Software, Jinan 250101, Shandong, Peoples R China@@@[Yang, JS]Shandong Univ Tradit Chinese Med, Affiliated Hosp 1, Jinan 250014, Shandong, Peoples R China. [hx_id] => 2378,2371 [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [title_en] => Automatic Segmentation and Measurement on Knee Computerized Tomography Images for Patellar Dislocation Diagnosis [author_in] => [Sun, Limin; Huang, Yan; Yin, Yilong; Peng, Jingliang] Shandong Univ, Sch Software, Jinan 250101, Shandong, Peoples R China.@@@ [Kong, Qi] State Grid Anhui Elect Power Co, Hefei 230061, Anhui, Peoples R China.@@@ [Yang, Jiushan; Wang, Shaoshan; Zou, Ruiqi] Shandong Univ Tradit Chinese Med, Affiliated Hosp 1, Jinan 250014, Shandong, Peoples R China. [volume] => 2020 [source_type] => 351 [pub_year] => 2020 [article_id] => 819359,813444 [hints] => 1 [publisher] => HINDAWI LTD [doi] => 10.1155/2020/1782531 [language] => English [issn] => 1748-670X [batch] => 3422,3424 [publication_en] => COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE [email] => sunliminsdu@163.com; lindaxian@yeah.net; huang_yan74@163.com;; yangjiushan@163.com; shaoshan278@sohu.com; zrq197935@163.com;; ylyin@sdu.edu.cn; jingliap@163.com [document_No] => 1782531 [format_title_en_issn_pub_year] => 2ecc7093c334a1fd2bd45bdae955e8c4687151721 [publication_iso] => Comput. Math. Method Med. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [cite_wos] => 0 [check_3Y] => 0 [delivery_No] => KN1LE [format_title] => [author_fn] => Sun, Limin; Kong, Qi; Huang, Yan; Yang, Jiushan; Wang, Shaoshan; Zou, Ruiqi; Yin, Yilong; Peng, Jingliang [pages] => 13 [publication_29] => COMPUT MATH METHOD M [open_type] => DOAJ Gold [eissn] => 1748-6718 [publication_type] => J [get_data] => 2020-03-06 [format_publication_cn] => [keyword_plu] => ACTIVE CONTOURS DRIVEN; BIAS FIELD ESTIMATION [fund_ab] => The authors thank Xian Wu for his help in rendering the images for; Figure 2. This work was supported by the National Natural Science; Foundation of China (grant no. 61872398). [format_title_en] => 163c222f083bcd3d358cc7a37e6e282f1416914484 [publisher_city] => LONDON [pub_date] => JAN 28 [cauthor_order] => 3,4 [reference_No] => 36 [cite_awos] => 0 [wos_No] => WOS:000514600200001 [sys_priority_field] => 73 [format_wos_No] => 662c98a398061ebfd89c80238ef424aa-1440434370 [wos_sub] => Mathematical & Computational Biology [research_area] => Mathematical & Computational Biology [cauthor_back] => Huang, Y@@@Yang, JS [check_180] => 0 [publisher_ad] => ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND [format_publication_en] => 10d802888c1b0289d64f731bb0ed1c561299717500 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => computationalandmathematicalmethodsinmedicine [jl_country] => 中国 [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => hindawiltd [company_id] => 0 [author_id] => 23020,25114,21296 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 3 [name] => 黄燕 [irtag] => 7 [t_index] => 3 [person_id] => 21296 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 8 [name] => 彭京亮 [irtag] => 7 [t_index] => 0 [person_id] => 23020 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 7 [name] => 尹义龙 [irtag] => 7 [t_index] => 0 [person_id] => 25114 ) ) [id] => BgA003ABe-eYmRww6A0C [tags] => 0 ) [11] => Array ( [cauthor] => Cui, Chaoran(crcui@sdufe.edu.cn) [issn] => 0020-0255 [school_id] => 117 [controlled_terms] => Collaborative filtering - Deep neural networks - Network architecture [batch2] => 15 [hb_batch] => 3418 [ei_No] => 20194307587525 [tag] => 0 [author_en] => Cui, CR; Yang, WY; Shi, C; Wang, M; Nie, XS; Yin, YL [abstract_en] => Personalization is emerging as a key research objective for image aesthetics assessment, and how to incorporate personal preferences into aesthetics models is a crucial issue to be solved. Prior studies usually require users to explicitly express their aesthetic preferences in certain ways, which are time-consuming and labor-intensive. In this paper, inspired by the observation that human cognition and behavior influence each other, we propose to sense user aesthetic preferences from their favoring behavior on social media platforms. In this manner, personalized image aesthetics assessment can be realized without adding any extra burden to users. Towards this goal, we gather user favoring behavior over professional social photos and consider both user personal preference and common aesthetic standard to deal with the unreliability of user favoring behavior. Besides, we follow the idea of collaborative filtering and optimize the pairwise ranking between images to alleviate the data sparsity problem. Finally, a deep neural network architecture is developed for personalized aesthetics modeling. A simulated evaluation is carried out on two benchmark aesthetics datasets, even though users\' true preferences cannot be directly observed. The results demonstrate the potential of our approach for personalized image aesthetics assessment. (C) 2019 Elsevier Inc. All rights reserved. [format_doi] => 2e057d2042117c41c871550ca534d886-877719172 [author_in] => [Cui, Chaoran; Yang, Wenya; Nie, Xiushan] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan 250014, Shandong, Peoples R China.@@@ [Shi, Cheng] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China.@@@ [Wang, Meng] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Anhui, Peoples R China.@@@ [Yin, Yilong] Shandong Univ, Sch Software, Jinan 250101, Shandong, Peoples R China. [cauthor_back] => Cui, Chaoran@@@Cui, CR [format_title_en_publication_en_pub_year] => 129e38e20865d40cdcbf8f894a3db7761500262005 [classification_No] => 903.1 Information Sources and Analysis - 971 Social Sciences [main_eword] => Behavioral research [format_ei_No] => ea9a87ffea187e2b830a954365eb0e4e-284876897 [from_id] => 74,73 [email] => crcui@sdufe.edu.cn; niexsh@sdufe.edu.cn; ylyin@sdu.edu.cn [classification_pub] => ISIJBC [datebase] => Compendex;Compilation and indexing terms, Copyright 2020 Elsevier Inc. [sys_level_num] => 15_8 [sys_jg_type] => 11,9 [title_en] => Personalized image quality assessment with Social-Sensed aesthetic preference [volume] => 512 [author_fn] => Cui, Chaoran; Yang, Wenya; Shi, Cheng; Wang, Meng; Nie, Xiushan; Yin, Yilong [pub_year] => 2020 [pub_date] => FEB [begin_page] => 780 [hints] => 1 [publisher] => ELSEVIER SCIENCE INC [doi] => 10.1016/j.ins.2019.10.011 [language] => English [source_type] => 351 [reference_No] => 50 [batch] => 3422,3418 [publication_en] => INFORMATION SCIENCES [hx_id] => 2376,2371 [sys_update_time] => 2020-03-13 09:40:15 [format_title_en_issn_pub_year] => 32c145a375baf5326cbc4648c9c3f963-1078416611 [article_id] => 813703,809727 [cauthor_order] => 1,1 [uncontrolled_terms] => Aesthetic preference - Data sparsity problems - Image Aesthetics - Image quality assessment - Personal preferences - Personalizations - Social media platforms - Social sense [SYS_TAG] => 3 [end_page] => 794 [page] => 780-794 [hb_type] => 2 [article_dt] => Article [cite_wos] => 0 [fund_No] => National Natural Science Foundation of ChinaNational Natural Science; Foundation of China [61701281, 61876098, 61671274, 61573219]; Shandong; Provincial Natural Science FoundationNatural Science Foundation of; Shandong Province [ZR2017QF009]; Fostering Project of Dominant; Discipline and Talent Team of Shandong Province Higher Education; Institutions [check_3Y] => 4 [delivery_No] => JZ0ET [format_title] => [cauthor_ad] => [Cui, CR]Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan 250014, Shandong, Peoples R China. [pages] => 15 [publication_29] => INFORM SCIENCES [eissn] => 1872-6291 [publication_type] => J [get_data] => 2020-03-06 [keyword_en] => Image aesthetics assessment; Personalization; Aesthetic preference; modeling; Social sense [format_publication_cn] => [publication_iso] => Inf. Sci. [fund_ab] => This work was supported by the National Natural Science Foundation of; China under Grant 61701281, Grant 61876098, Grant 61671274, and Grant; 61573219, by Shandong Provincial Natural Science Foundation under Grant; ZR2017QF009, and by the Fostering Project of Dominant Discipline and; Talent Team of Shandong Province Higher Education Institutions. [format_title_en] => f126ff6a3b4de0b5cee6aae520b0d5ef-839600605 [publisher_city] => NEW YORK [cite_awos] => 0 [wos_No] => WOS:000504778300050 [sys_priority_field] => 73 [format_wos_No] => 4b93e1d5360d72ec7844c781ea38cc1f-2066273099 [wos_sub] => Computer Science, Information Systems [research_area] => Computer Science [check_180] => 4 [publisher_ad] => STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA [format_publication_en] => b7c57e46a19d28856337bb8f79a7b12c-1440894452 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => informationsciences [jl_country] => 中国 [jl_keyword_en] => imageaestheticsassessment,aestheticpreference,modeling,socialsense,personalization [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => elsevierscienceinc [company_id] => 0,163 [author_id] => 25114 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 尹义龙 [irtag] => 7 [t_index] => 0 [person_id] => 25114 ) ) [sys_subject_sort] => 0 [college_parent_id] => 163 [company_test] => Array [id] => dwA303ABe-eYmRww8iK5 [tags] => 0 ) [12] => Array ( [cite_scopus] => 1 [cauthor] => Zou, G(zouguizheng@sdu.edu.cn) [school_id] => 117 [scopus_No] => 2-s2.0-85075377230 [author_in] => [Gao, Xuwen; Fu, Kena; Fu, Li; Zhang, Bin; Zou, Guizheng] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China.@@@ [Wang, Huaisheng] Liaocheng Univ, Dept Chem, Liaocheng 252059, Shandong, Peoples R China. [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075377230&doi=10.1016%2fj.bios.2019.111880&partnerID=40&md5=412a7be2afd20d07b8a2a899d940c4c3 [tag] => 0 [author_en] => Gao, XW; Fu, KN; Fu, L; Wang, HS; Zhang, B; Zou, GZ [publication_en] => BIOSENSORS & BIOELECTRONICS [format_scopus_No] => 677de94982cd80c0a617b8e82e5e991c414166480 [format_doi] => 0e5018bed3cb929a8e859e4d53deb40e-1085060898 [sys_update_time] => 2020-03-13 09:56:31 [fund_No] => National Natural Science Foundation of ChinaNational Natural Science; Foundation of China [21427808, 21375077]; Fundamental Research Funds of; Shandong University [2018JC017] [reference] => Cao, J.T., Wang, Y.L., Zhang, J.J., Zhou, Y.J., Ren, S.W., Liu, Y.M., (2016) RSC Adv., 6 (89), pp. 86682-86687; Chen, C., Zhang, P.F., Gao, G.H., Gao, D.Y., Yang, Y., Liu, H., Wang, Y.H., Cai, L.T., (2014) Adv. Mater., 26 (36), pp. 6313-6317; Chen, P.C., Liu, G.L., Zhou, Y., Brown, K.A., Chernyak, N., Hedrick, J.L., He, S., Mirkin, C.A., (2015) J. Am. Chem. Soc., 137 (28), pp. 9167-9173; Chen, X.Q., Liu, Y., Ma, Q., (2018) J. Mater. Chem., C 6 (5), pp. 942-959; Dong, H., Lei, J., Ding, L., Wen, Y., Ju, H., Zhang, X., (2013) Chem. Rev., 113 (8), pp. 6207-6233; Escobedo, J.O., Rusin, O., Lim, S., Strongin, R.M., (2010) Curr. Opin. Chem. Biol., 14 (1), pp. 64-70; Guo, Z.Q., Park, S., Yoon, J., Shin, I., (2014) Chem. Soc. Rev., 43 (1), pp. 16-29; He, Y., Zhong, Y., Su, Y., Lu, Y., Jiang, Z., Peng, F., Xu, T., Lee, S.-T., (2011) Angew. Chem. Int. Ed., 50 (25), pp. 5695-5698; He, Y.P., Hou, S.F., Yang, L.Q., Zhang, F., Zou, G.Z., (2018) Chem. Eur J., 24 (38), pp. 9592-9597; He, Y.P., Yang, L.Q., Zhang, F., Zhang, B., Zou, G.Z., (2018) J. Phys. Chem. Lett., 9 (20), pp. 6089-6095; He, Y.P., Zhang, F., Zhang, B., Zou, G.Z., (2018) Anal. Chem., 90 (8), pp. 5474-5480; Hercules, D.M., (1964) Science, 145 (363), pp. 808-809; Hesari, M., Barbon, S.M., Staroverov, V.N., Ding, Z., Gilroy, J.B., (2015) Chem. Commun., 51 (18), pp. 3766-3769; Hesari, M., Ding, Z.F., (2017) Acc. Chem. Res., 50 (2), pp. 218-230; Hesari, M., Swanick, K.N., Lu, J.S., Whyte, R., Wang, S., Ding, Z., (2015) J. Am. Chem. Soc., 137 (35), pp. 11266-11269; Hu, L.Z., Xu, G.B., (2010) Chem. Soc. Rev., 39 (8), pp. 3275-3304; Huang, J.Y., Zhao, L., Lei, W., Wen, W., Wang, Y.J., Bao, T., Xiong, H.Y., Wang, S.F., (2018) Biosens. Bioelectron., 99, pp. 28-33; Kim, J.M., Jeong, S., Song, J.K., Kim, J., (2018), pp. 2838-2841. , 54(23); Kirkwood, N., Monchen, J.O.V., Crisp, R.W., Grimaldi, G., Bergstein, H.A.C., du Fosse, I., van der Stam, W., Houtepen, A.J., (2018) J. Am. Chem. Soc., 140 (46), pp. 15712-15723; Li, J., Cao, Y., Hinman, S.S., McKeating, K.S., Guan, Y.W., Hu, X.Y., Cheng, Q., Yang, Z.J., (2018) Biosens. Bioelectron., 100, pp. 304-311; Li, L.L., Chen, Y., Zhu, J.J., (2017) Anal. Chem., 89 (1), pp. 358-371; Li, X.Y., Duan, S., Liu, H.C., Chen, G.Y., Luo, Y., Agren, H., (2019) J. Phys. Chem. Lett., 10 (3), pp. 487-492; Liang, G.D., Liu, S.F., Zou, G.Z., Zhang, X.L., (2012) Anal. Chem., 84 (24), pp. 10645-10649; Liang, G.D., Shen, L.P., Zhang, X.L., Zou, G.Z., (2011) Eur. J. Inorg. Chem., 25, pp. 3726-3730; Liu, J.L., Zhang, J.Q., Tang, Z.L., Zhuo, Y., Chai, Y.Q., Yuan, R., (2019) Chem. Sci., 10 (16), pp. 4497-4501; Liu, S.F., Zhang, X., Yu, Y.M., Zou, G.Z., (2014) Anal. Chem., 86 (5), pp. 2784-2788; Liu, S.L., Zhang, Q.H., Zhang, L., Gu, L., Zou, G.Z., Bao, J.C., Dai, Z.H., (2016) J. Am. Chem. Soc., 138 (4), pp. 1154-1157; Liu, Z.Y., Qi, W.J., Xu, G.B., (2015) Chem. Soc. Rev., 44 (10), pp. 3117-3142; Long, X.Y., Zhang, F., He, Y.P., Hou, S.F., Zhang, B., Zou, G.Z., (2018) Anal. Chem., 90 (5), pp. 3563-3569; Meng, L., Wang, S., Cao, F., Tian, W., Long, R., Li, L., (2019) Angew. Chem. Int. Ed., 58, pp. 6761-6765; Miao, W.J., (2008) Chem. Rev., 108 (7), pp. 2506-2553; Nepomnyashchii, A.B., Bard, A.J., (2012) Acc. Chem. Res., 45 (11), pp. 1844-1853; Reid, E.F., Cook, V.C., Wilson, D.J., Hogan, C.F., (2013) Chem. Eur J., 19 (47), pp. 15907-15917; Richter, M.M., (2004) Chem. Rev., 104 (6), pp. 3003-3036; Santhana, K.S., Bard, A.J., (1965) J. Am. Chem. Soc., 87 (1), p. 139; Santra, P.K., Kamat, P.V., (2012) J. Am. Chem. Soc., 134 (5), pp. 2508-2511; Shao, K., Wang, B., Ye, S., Zuo, Y., Wu, L., Li, Q., Lu, Z., Han, H., (2016) Anal. Chem., 88 (16), pp. 8179-8187; Shi, X., Yang, J., Salvador, J.R., Chi, M.F., Cho, J.Y., Wang, H., Bai, S.Q., Chen, L.D., (2011) J. Am. Chem. Soc., 133 (20), pp. 7837-7846; Swanick, K.N., Hesari, M., Workentin, M.S., Ding, Z., (2012) J. Am. Chem. Soc., 134 (37), pp. 15205-15208; Tan, X., Zhang, B., Zhou, J., Zou, G.Z., (2017) ChemElectroChem, 4 (7), pp. 1714-1718; Wang, F., Lin, J., Zhao, T.B., Hu, D.D., Wu, T., Liu, Y., (2016) J. Am. Chem. Soc., 138 (24), pp. 7718-7724; Wang, J., Han, H., Jiang, X., Huang, L., Chen, L., Li, N., (2012) Anal. Chem., 84 (11), pp. 4893-4899; Wang, J., Jiang, X., Han, H., (2016) Biosens. Bioelectron., 82, pp. 26-31; Wang, J., Xia, T., Wang, L., Zheng, X.S., Qi, Z.M., Gao, C., Zhu, J.F., Xiong, Y.J., (2018) Angew. Chem. Int. Ed., 57 (50), pp. 16447-16451; Wang, T., Ma, H., Padelford, J.W., Lobo, E., Tran, M.T., Zhao, F., Fang, N., Wang, G., (2018) Electrochim. Acta, 282, pp. 369-376; Wang, T., Padelford, J.W., Ma, H., Gubitosi-Raspino, M.F., Wang, G., (2017) ChemElectroChem, 4 (7), pp. 1697-1701; Wang, T., Wang, D., Padelford, J.W., Jiang, J., Wang, G., (2016) J. Am. Chem. Soc., 138 (20), pp. 6380-6383; Wen, W., Huang, J.Y., Bao, T., Zhou, J., Xia, H.X., Zhang, X.H., Wang, S.F., Zhao, Y.D., (2016) Biosens. Bioelectron., 83, pp. 142-148; Wu, P., Hou, X.D., Xu, J.J., Chen, H.Y., (2014) Chem. Rev., 114 (21), pp. 11027-11059; Xie, R.G., Peng, X.G., (2009) J. Am. Chem. Soc., 131 (30), pp. 10645-10651; Yuan, L., Lin, W., Zheng, K., He, L., Huang, W., (2013) Chem. Soc. Rev., 42 (2), pp. 622-661; Yuan, Y.L., Zhang, L., Wang, H.J., Chai, Y.Q., Yuan, R., (2018) Anal. Chim. Acta, 1001, pp. 112-118; Zhang, B., Zhang, F., Zhang, P., Shen, D., Gao, X., Zou, G., (2019) Anal. Chem., 91 (5), pp. 3754-3758; Zhang, F., He, Y.P., Fu, K.N., Fu, L., Zhang, B., Wang, H.S., Zou, G.Z., (2018) Biosens. Bioelectron., 115, pp. 77-82; Zhang, X., Zhang, B., Miao, W.J., Zou, G.Z., (2016) Anal. Chem., 88 (10), pp. 5482-5488; Zhou, J., He, Y.P., Zhang, B., Sun, Q.L., Zou, G.Z., (2017) Talanta, 165, pp. 117-121; Zhou, J., Nie, L., Zhang, B., Zou, G.Z., (2018) Anal. Chem., 90 (21), pp. 12361-12365; Zou, G.Z., Tan, X., Long, X.Y., He, Y.P., Miao, W.J., (2017) Anal. Chem., 89 (23), pp. 13024-13029 [format_title_en_publication_en_pub_year] => b5bf210b39fa6123cd87672f0befbf7b-1626319676 [abstract_en] => Novel optical labels for biosensing in near-infrared (NIR) region (especially between 800 and 900 nm) are arousing much attention for higher penetrating capability, less scattering and lowered autofluorescent background. Herein, a water-soluble electrochemiluminophore with effective electrochemiluminescence (ECL) around 815 nm is developed via doping dual-stabilizers-capped CdTe nanocrystals (NCs) with Co2+ species in a growth-doping way. The Co2+-doped CdTe NCs not only can preserve the highly-passivated surface states of dual-stabilizers-capped CdTe NCs, but also exhibit efficient red-shifted photoluminescence (PL) and ECL into the promising optical NIR window of 800-900 nm. A spectrum-based ultrasensitive NIR ECL immunosensor is consequently fabricated with the Co2+-doped CdTe NCs as tags for the first time, which can selectively and sensitively determine human carcinoembryonic antigen with a wide linearity range from 1 fg/mL to 10 pg/mL and a low limit of detection at 0.2 fg/mL (S/N = 3). This work opens a way to screen novel NIR electrochemiluminophore as well as to modulate the ECL performance of NCs via surface doping and engineering. [scopus_id] => 57207302028;57202136464;57202130521;56922351200;57202240396;57102652800; [from_id] => 76,73 [cauthor_ad] => [Zou, GZ]Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China. [hx_id] => 2378,2371 [classification_pub] => BBIOE [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11,10 [title_en] => Red-shifted electrochemiluminescence of CdTe nanocrystals via Co2+-Doping and its spectral sensing application in near-infrared region [index_keyword] => Antigens; Cadmium telluride; II-VI semiconductors; Immunosensors; Infrared devices; Nanocrystals; Carcinoembryonic antigen; CdTe nanocrystals; CdTe NCs; Electrochemiluminescence; Limit of detection; Near Infrared; Near infrared region; Passivated surface; Red Shift [standard_in] => School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China; Department of Chemistry, Liaocheng University, Liaocheng, 252059, China [volume] => 150 [source_type] => 351 [pub_year] => 2020 [keyword_en] => Electrochemiluminescence; Near-infrared; Co2+-doped CdTe NCs;; Immunosensor; Human carcinoembryonic antigen [article_id] => 810408,814834 [hints] => 0 [publisher] => ELSEVIER ADVANCED TECHNOLOGY [doi] => 10.1016/j.bios.2019.111880 [language] => English [issn] => 0956-5663 [batch] => 3422,3424 [pubmedID] => 31748194 [email] => zouguizheng@sdu.edu.cn [document_No] => 111880 [format_title_en_issn_pub_year] => c7e99ef415b70697536af4d77b53dcef971132626 [publication_iso] => Biosens. Bioelectron. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [cite_wos] => 0 [check_3Y] => 33 [delivery_No] => KG0MO [format_title] => [author_fn] => Gao, Xuwen; Fu, Kena; Fu, Li; Wang, Huaisheng; Zhang, Bin; Zou, Guizheng [pages] => 7 [publication_29] => BIOSENS BIOELECTRON [researcherID] => Zhang, Bin/H-4942-2014 [eissn] => 1873-4235 [orcID] => Zhang, Bin/0000-0002-1529-6356 [publication_type] => J [get_data] => 2020-03-06 [format_publication_cn] => [keyword_plu] => DUAL-COLOR ELECTROCHEMILUMINESCENCE; ELECTROGENERATED CHEMILUMINESCENCE; QUANTUM DOTS; EFFICIENT ELECTROCHEMILUMINESCENCE; FLUORESCENT-PROBES; IMMUNOASSAY; ELECTROCHEMISTRY; APTASENSOR; STRATEGY; ANTIGEN [fund_ab] => This project is supported by the National Natural Science Foundation of; China (Grant Nos. 21427808, 21375077), and the Fundamental Research; Funds of Shandong University (2018JC017). [format_title_en] => 8f5d8515c441d1e4b5e77867297a83f8-1226712364 [publisher_city] => OXFORD [pub_date] => FEB 15 [cauthor_order] => 6 [reference_No] => 57 [cite_awos] => 0 [wos_No] => WOS:000509635500049 [sys_priority_field] => 73 [format_wos_No] => 3ce361f7054c09b42669271358a12aef894547588 [wos_sub] => Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical;; Electrochemistry; Nanoscience & Nanotechnology [research_area] => Biophysics; Biotechnology & Applied Microbiology; Chemistry;; Electrochemistry; Science & Technology - Other Topics [cauthor_back] => Zou, GZ [check_180] => 33 [publisher_ad] => OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,; OXFORD OX5 1GB, OXON, ENGLAND [format_publication_en] => 1a07e3b34981827aeb11821a0da313f71797155525 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => biosensorsandbioelectronics [jl_country] => 中国 [jl_keyword_en] => ,co2dopedcdtencs,nearinfrared,humancarcinoembryonicantigen,electrochemiluminescence,immunosensor [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => elsevieradvancedtechnology [author_test] => Array ( [0] => Array ( [sure] => 1 [irmagnum] => 0 [u_index] => 0 [name] => 邹桂征 [irtag] => 0 [t_index] => 0 [person_id] => 26251 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 3 [name] => 傅利 [irtag] => 7 [t_index] => 0 [person_id] => 20761 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 张斌 [irtag] => 7 [t_index] => 0 [person_id] => 25314 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 张斌 [irtag] => 7 [t_index] => 0 [person_id] => 25315 ) [4] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 张斌 [irtag] => 7 [t_index] => 0 [person_id] => 25312 ) [5] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 张斌 [sys_author_id] => Array ( [0] => 26251 ) [irtag] => 7 [t_index] => 0 [person_id] => 25313 ) ) [company_id] => 0,169 [author_id] => 25312,25313,25314,25315,26251,20761 [sys_subject_sort] => 0 [college_parent_id] => 169 [company_test] => Array [id] => IQA103ABe-eYmRwwJhsm [tags] => 0 ) [13] => Array ( [cauthor] => Chen, Jiezhi(chen.jiezhi@sdu.edu.cn) [issn] => 0894-6507 [school_id] => 117 [controlled_terms] => Amorphous semiconductors - Annealing - Electronic properties - Femtosecond lasers - Microelectronics - Phosphorus - Semiconductor lasers [batch2] => 15 [hb_batch] => 3418 [ei_No] => 20200608143830 [tag] => 0 [author_en] => Zhan, XP; Su, Y; Fu, Y; Chen, JZ; Xu, HL [sys_level_num] => 15_8 [abstract_en] => Heat effects on femtosecond laser annealing to crystallize doped amorphous Si films are studied. The structural, optical and electronic properties of phosphorus-doped amorphous Si films before and after femtosecond laser treatment are characterized. As the temperature increases from room temperature to 200 degrees C controlled by a hot-stage, the grain size and number of crystalline Si on the films are gradually enhanced, which is confirmed by comparing the surface morphologies and analyzing the Raman spectrum. It is demonstrated that heating the substrate can promote the phase transformation of amorphous Si and the activation of phosphorus dopants, yielding a significant improvement in the light-trapping capability and carrier conductivity of the laser-annealed films. By using the proposed heat-assisted femtosecond laser annealing technique, polycrystallized phosphorus-doped amorphous Si films are produced showing highly absorptive and conductive, which might be further applied in photovoltaic and microelectronic devices. [format_doi] => 370dcab947356c771d34bc6e7c3b4f161527379523 [sys_update_time] => 2020-03-13 09:40:17 [cauthor_back] => Chen, Jiezhi@@@Chen, JZ@@@Xu, HL [format_title_en_publication_en_pub_year] => 7f80747a437165b9cef1970f7767f00b1922257029 [classification_No] => 537.1 Heat Treatment Processes - 549.3 Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals - 712.1 Semiconducting Materials - 744.4.1 Semiconductor Lasers - 804 Chemical Products Generally [document_No] => 8897683 [main_eword] => Amorphous silicon [format_ei_No] => 1453b0cb1e58b8ef12c07d0758d5c38f-431486741 [from_id] => 76,74,73 [issue] => 1 [email] => chen.jiezhi@sdu.edu.cn; huailiang@jlu.edu.cn [classification_pub] => ITSME [datebase] => Scopus [numerical_index] => Temperature 4.73e+02K [sys_jg_type] => 11 [format_issn_issue_page_pub_year] => d4ce3cc5405cecd70a1ff1bb56742d47397244197 [title_en] => Phosphorous-Doped alpha-Si Film Crystallization Using Heat-Assisted Femtosecond Laser Annealing [volume] => 33 [author_fn] => Zhan, Xuepeng; Su, Yue; Fu, Yao; Chen, Jiezhi; Xu, Huailiang [pub_year] => 2020 [eissn] => 1558-2345 [pub_date] => FEB [begin_page] => 116 [hints] => 0 [publisher] => IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC [doi] => 10.1109/TSM.2019.2953365 [language] => English [source_type] => 351 [reference_No] => 37 [batch] => 3422,3418,3424 [publication_en] => IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING [hx_id] => 2376,2378,2371 [author_in] => [Zhan, Xuepeng; Chen, Jiezhi] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China.@@@ [Su, Yue; Fu, Yao; Xu, Huailiang] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China.@@@ [Xu, Huailiang] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China. [format_title_en_issn_pub_year] => 7f36d7cae772666be048474addeecbbe-1479578601 [article_id] => 808836,813793,814682 [cauthor_order] => 4,4,5 [uncontrolled_terms] => Amorphous Si films - Carrier conductivity - Femtosecond laser annealing - Laser annealing - Micro-electronic devices - Optical and electronic properties - Phosphorus-doped - Temperature increase [SYS_TAG] => 3 [end_page] => 120 [page] => 116-120 [hb_type] => 2 [article_dt] => Article [fund_No] => China Key Research and Development Program [2016YFA0201800]; National; Natural Science Foundation of ChinaNational Natural Science Foundation; of China [61625501, 61427816]; Fundamental Research Funds of Shandong; University; Open Fund of the State Key Laboratory of High Field Laser; Physics (SIOM) [index_keyword] => Amorphous semiconductors; Annealing; Electronic properties; Femtosecond lasers; Microelectronics; Phosphorus; Semiconductor lasers; Amorphous Si films; Carrier conductivity; Femtosecond laser annealing; Laser annealing; Micro-electronic devices; Optical and electronic properties; Phosphorus-doped; Temperature increase; Amorphous silicon [format_title] => [reference] => Chen, X., Jia, B., Zhang, Y., Gu, M., Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets (2013) Light Sci. Appl., 2, p. e92. , Aug; Lee, K.-T., Lee, J.Y., Seo, S., Guo, L.J., Colored ultrathin hybrid photovoltaics with high quantum efficiency (2014) Light Sci. Appl., 3, p. e215. , Oct; Dassow, R., Köhler, J.R., Grauvogl, M., Bergmann, R.B., Werner, J., Laser-crystallized polycrystalline silicon on glass for photovoltaic applications (1999) Solid State Phenom., 67-68, pp. 193-198. , Apr; Matsuyama, T., High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method (1996) J. Non Cryst. Solids, 198-200, pp. 940-944. , May; Bellanger, P., Polycrystalline silicon films obtained by crystallization of amorphous silicon on aluminium based substrates for photovoltaic applications (2017) Thin Solid Films, 636, pp. 150-157. , Aug; Stuckelberger, M., Biron, R., Wyrsch, N., Haug, F.J., Ballif, C., Review: Progress in solar cells from hydrogenated amorphous silicon (2017) Renew. Sustain. Energy Rev., 76, pp. 1497-1523. , Sep; Sun, Z., Gupta, M.C., Laser processing of silicon for photovoltaics and structural phase transformation (2018) Appl. Surface Sci., 456, pp. 342-350. , Oct; Liu, J., Liu, B., Zhang, X., Guo, X., Liu, S., Improvement of crystallinity for poly-Si thin film by negative substrate bias at low temperature (2017) Thin Solid Films, 629, pp. 90-96. , May; Lin, Y.-T., Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors (2006) Appl. Phys. Lett., 88. , May; Zhang, T., Pulsed KrF excimer laser dopant activation in nanocrystal silicon in a silicon dioxide matrix (2016) Appl. Phys. Lett., 108. , Feb; Li, R., Lee, S.J., Hong, M.H., Chi, D.Z., Kwong, D.L., Pt-germanide formed by laser annealing and its application for Schottky source/drain metal-oxide-semiconductor field-effect transistor integrated with TaN/Chemical vapor deposition HfO2/Ge Gate Stack (2008) Jpn. J. Appl. Phys., 47, pp. 2548-2550. , Apr; Huang, J., Germanium n+/ p junction formation by laser thermal process (2005) Appl. Phys. Lett., 87. , Oct; Rousse, A., Non-thermal melting in semiconductors measured at femtosecond resolution (2001) Nature, 410, pp. 65-68. , Mar; Sokolowski-Tinten, K., Biakowski, J., Linde, D.V.D., Ultrafast laser-induced order-disorder transitions in semiconductors (1995) Phys. Rev. B, Condens. Matter, 51. , May; Shieh, J.-M., Chen, Z.-H., Dai, B.-T., Wang, Y.-C., Zaitsev, A., Pan, C.-L., Near-infrared femtosecond laser-induced crystallization of amorphous silicon (2004) Appl. Phys. Lett., 85 (7), pp. 1232-1234; Serien, D., Sugioka, K., Fabrication of three-dimensional proteinaceous micro-and nano-structures by femtosecond laser cross-linking (2018) Opto Electron. Adv., 1 (4); Sundaram, S.K., Mazur, E., Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses (2001) Nat. Mater., 1, pp. 217-224. , Dec; Liang, P.H., Fang, C.J., Jiang, D.S., Wagner, P., Ley, L., Ultrashort laser-pulse annealing of hydrogenated amorphous silicon (1981) Appl. Phys. A, Solids Surf., 26 (1), pp. 39-43; Zhan, X.-P., Hou, M.-Y., Ma, F.-S., Su, Y., Chen, J.-Z., Xu, H.-L., Room temperature crystallization of amorphous silicon film by ultrashort femtosecond laser pulses (2019) Opt. Laser Technol., 112, pp. 363-367. , Apr; Miura, H., Okamoto, N., Crystallization-induced stress in phosphorus-doped amorphous silicon thin films (1994) J. Appl. Phys., 75 (9), pp. 4747-4749; Jiang, Y.-L., Chen, C.-L., Lin, C.-W., Huang, S.-F., Rapid and efficient recrystallization and activation of implanted phosphorus doping in laserannealed polysilicon by rapid energy transfer annealing (2003) Jpn. J. Appl. Phys., 42 (12 B), pp. 1498-1500; Beserman, R., Khait, Y.L., Chack, A., Weil, R., Beyer, W., Comparison between the crystallization processes by laser and furnace annealing of pure and doped a-Si: H (2002) J. Non Cryst. Solids, 299-302, pp. 736-740. , Apr; Xu, J., Xua, J., Lu, P., Shan, D., Li, W., Chen, K., Charge transfer of single laser crystallized intrinsic and phosphorus-doped Si-nanocrystals visualized by Kelvin probe force microscopy (2014) J. Appl. Phys., 116 (13); Wang, M., Chen, K., He, L., Li, W., Xu, J., Huang, X., Green electro- And photoluminescence from nanocrystalline Si film prepared by continuous wave Ar+ laser annealing of heavily phosphorus doped hydrogenated amorphous silicon film (1998) Appl. Phys. Lett., 73 (1), pp. 105-107; Jin, J., Yuan, Z., Huang, L., Chen, S., Shi, W., Cao, Z., Lou, Q., Laser crystallization of amorphous silicon films investigated by Raman spectroscopy and atomic force microscopy (2010) Appl. Surface Sci., 256 (11), pp. 3453-3458; Lin, H.K., Huang, U.G., Hong, S.Z., Effects of laser parameters on optoelectronic properties of polycrystalline silicon films prepared by two-step annealing process (2017) Int. J. Adv. Manuf. Technol., 93 (9-12), pp. 3159-3163; Rybalko, P.D., Femtosecond laser crystallization of boron-doped amorphous hydrogenated silicon films (2016) J. Nano Electron. Phys., 8 (3); Izawa, Y., Tokita, S., Fujita, M., Norimatsu, T., Izawa, Y., Ultra fast melting process in femtosecond laser crystallization of thin a-Si layer (2009) Appl. Surface Sci., 255 (4), pp. 9764-9769; Paillard, V., Puech, P., Laguna, M.A., Carles, R., Kohn, B., Huisken, F., Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals (1999) J. Appl. Phys., 86 (4), pp. 1921-1924; Arora, A.K., Rajalakshmi, M., Ravindran, T.R., Phonon confinement in nanostructured materials (2004) Encyclopedia of Nanoscience and Nanotechnology, 8, pp. 499-512. , Los Angeles, CA, USA: Amer. Sci; Smit, C., Swaaij, R.A.C.M.M.V., Donker, H., Petit, A.M.H.N., Kessels, W.M.M., De Sanden, M.C.M.V., Determining the material structure of microcrystalline silicon from Raman spectra (2003) J. Appl. Phys., 94 (5), pp. 3582-3588; Nayak, B.K., Gupta, M.C., Femtosecond-laser-inducedcrystallization and simultaneous formation of light trapping microstructures in thin a-Si: H films (2007) Appl. Phys. A, Solids Surf., 89 (3), pp. 663-666; Zhan, X., Remote and rapid micromachining of broadband lowreflectivity black silicon surfaces by femtosecond laser filaments (2017) Opt. Lett., 42 (3), pp. 510-513; Wang, H., Kongsuwan, P., Satoh, G., Yao, Y.L., Femtosecond laserinduced simultaneous surface texturing and crystallization of a-Si: H thin film: Absorption and crystallinity (2012) J. Manuf. Sci. Eng., 134 (3); Phillips, K.C., Gandhi, H.H., Mazur, E., Sundaram, S.K., Ultrafast laser processing of materials: A review (2015) Adv. Opt. Photon., 7 (4), pp. 684-712; Nayak, B.K., Iyengar, V.V., Gupta, M.C., Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures (2011) Prog. Photovolt. Res. Appl., 19 (6), pp. 631-639; Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., Hotta, K., High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film (1989) IEEE Trans. Electron Devices, 36 (12), pp. 2868-2872. , Dec [scopus_id] => 55571289200;57200133881;57200134755;57205067688;7407449531; [format_scopus_No] => 5a16079812a0fd519a7409ef5bda29ef1258997492 [keyword_en] => Amorphous semiconductors; laser annealing [format_publication_cn] => [publication_iso] => IEEE Trans. Semicond. Manuf. [format_title_en] => 3cab99456d5aca51b9328e58676fba68-1717274338 [sys_priority_field] => 73 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079065799&doi=10.1109%2fTSM.2019.2953365&partnerID=40&md5=16adde33d26ddccd20b4b201adb53dab [standard_in] => School of Information Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China; State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China [scopus_No] => 2-s2.0-85079065799 [format_publication_en] => 135f3f9b52b3a7c00f0b6a35f9f50151-1136285432 [cite_wos] => 0 [check_3Y] => 0 [delivery_No] => KI5WA [cauthor_ad] => [Chen, JZ]Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China@@@[Xu, HL]Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China. [pages] => 5 [publication_29] => IEEE T SEMICONDUCT M [orcID] => chen, jiezhi/0000-0003-2996-1406 [publication_type] => J [get_data] => 2020-03-06 [keyword_plu] => AMORPHOUS-SILICON; POLYCRYSTALLINE SILICON [fund_ab] => This work was supported in part by China Key Research and Development; Program under Grant 2016YFA0201800, in part by the National Natural; Science Foundation of China under Grant 61625501 and Grant 61427816, in; part by the Fundamental Research Funds of Shandong University, and in; part by the Open Fund of the State Key Laboratory of High Field Laser; Physics (SIOM). [publisher_city] => PISCATAWAY [cite_awos] => 0 [wos_No] => WOS:000511419300013 [format_wos_No] => 66a654df92b8379821502d528d627474125866617 [wos_sub] => Engineering, Manufacturing; Engineering, Electrical & Electronic;; Physics, Applied; Physics, Condensed Matter [research_area] => Engineering; Physics [check_180] => 0 [publisher_ad] => 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => ieeetransactionsonsemiconductormanufacturing [jl_country] => 中国 [jl_keyword_en] => laserannealing,amorphoussemiconductors [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => ieeeinstelectricalelectronicsengineersinc [company_id] => 0,142 [author_id] => 25294,20264 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 陈杰智 [irtag] => 7 [t_index] => 4 [person_id] => 20264 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 詹学鹏 [irtag] => 7 [t_index] => 0 [person_id] => 25294 ) ) [sys_subject_sort] => 0 [college_parent_id] => 142 [company_test] => Array [id] => OQA403ABe-eYmRwwBioB [tags] => 0 ) [14] => Array ( [standard_in] => Environment Research Institute, Shandong University, Qingdao, 266237, China; School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, China; Center for Optics Research and Engineering (CORE), Shandong University, Qingdao, 266237, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China; Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan, 250100, China [cauthor] => Han, D(danicahan1125@163.com) [school_id] => 117 [scopus_No] => 2-s2.0-85077928107 [author_in] => [Bo, Xiaofei; Sun, Jianfei; Mei, Qiong; Wei, Bo; An, Zexiu; He, Maoxia] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China.@@@ [Han, Dandan] Heze Univ, Sch Chem & Chem Engn, Heze 274015, Peoples R China.@@@ [Li, Zhiqiang] Shandong Univ, Ctr Opt Res & Engn CORE, Qingdao 266237, Peoples R China.@@@ [Xie, Ju] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China.@@@ [Zhan, Jinhua] Shandong Univ, Dept Chem, Key Lab Colloid & Interface Chem, Educ Minist, Jinan 250100, Peoples R China. [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077928107&doi=10.1016%2fj.ecoenv.2020.110175&partnerID=40&md5=6be367b969a156610504c4952b68634d [tag] => 0 [author_en] => Bo, XF; Sun, JF; Mei, Q; Wei, B; An, ZX; Han, DD; Li, ZQ; Xie, J; Zhan, JH; He, MX [publication_en] => ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY [format_scopus_No] => 494799f01528a4a08eccacd3a2eb43a5153581696 [format_doi] => 146a255fda472f7fdd5fe548a6cbe48d-817630869 [sys_update_time] => 2020-03-13 09:56:08 [fund_No] => National Natural Science Foundation of ChinaNational Natural Science; Foundation of China [21777087, 21876099, 21477065]; Fundamental Research; Funds of Shandong University [2018JC015] [reference] => Atwood, D., Paisley-Jones, C., Pesticides Industry Sales and Usage: 2008–2012 Market Estimates (2017), US Environmental Protection Agency Washington, DC; Brezonik, P.L., Fulkerson-Brekken, J., Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents (1998) Environ. Sci. Technol., 32, pp. 3004-3010; Burns, J.M., Cooper, W.J., Ferry, J.L., King, D.W., DiMento, B.P., McNeill, K., Miller, C.J., Rusak, S.A., Methods for reactive oxygen species (ROS) detection in aqueous environments (2012) Aquat. Sci., 74, pp. 683-734; Canneaux, S., Bohr, F., Henon, E., KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results (2014) J. Comput. Chem., 35, pp. 82-93; Cao, H.J., Li, X., He, M.X., Zhao, X.S., Computational study on the mechanism and kinetics of NO3-initiated atmosphere oxidation of vinyl acetate (2018) Comput. Theor. Chem., 1144, pp. 18-25; Cashman, J.R., Olsen, L.D., Nishioka, R.S., Gray, E.S., Bern, H.A., S-oxygenation of thiobencarb (Bolero) in hepatic preparations from striped bass (Morone saxatilis) and mammalian systems (1990) Chem. Res. Toxicol., 3, pp. 433-440; Casida, J.E., Gray, R.A., Tilles, H., Thiocarbamate sulfoxides: potent, selective, and biodegradable herbicides (1974) Science, 184, pp. 573-574; Chen, Y.S., Casida, J.E., Thiocarbamate herbicide metabolism: microsomal oxygenase metabolism of EPTC involving mono- and dioxygenation at the sulfur and hydroxylation at each alkyl carbon (1978) J. Agric. Food Chem., 26, pp. 263-267; Chen, Y.S., Schuphan, I., Casida, J.E., S-Chloroallyl thiocarbamate herbicides: mouse hepatic microsomal oxygenase and rat metabolism of cis- and trans-[14C=O] diallate (1979) J. Agric. Food Chem., 27, pp. 709-712; Collins, F.C., Kimball, G.E., Diffusion-controlled reaction rates (1949) J. Colloid Sci., 4, pp. 425-437; Conder, J.M., Hoke, R.A., Wolf, W.D., Russell, M.H., Buck, R.C., Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds (2008) Environ. Sci. Technol., 42, pp. 995-1003; Cronin, M.T., Jaworska, J.S., Walker, J.D., Comber, M.H., Watts, C.D., Worth, A.P., Use of QSARs in international decision-making frameworks to predict health effects of chemical substances (2003) Environ. Health Perspect., 111, pp. 1391-1401; (2014), http://www.epa.gov/oppt/newchems/tools/21ecosar.htm; Ellis, M.K., Richardson, A.G., Foster, J.R., Smith, F.M., Widdowson, P.S., Farnworth, M.J., Moore, R.B., Wickramaratne, G.A.D.S., The reproductive toxicity of molinate and metabolites to the male rat: effects on testosterone and sperm morphology (1998) Toxicol. Appl. Pharmacol., 151, pp. 22-32; Proposed category for persistent, bioaccumulative, and toxic chemicals. Fed (1998) Regist, 63, pp. 53417-53423; Estimation Programs Interface Suite for Microsoft Windows (2014); Erian, A.W., Sherif, S.M., The chemistry of thiocyanic esters (1999) Tetrahedron, 55, pp. 7957-8024; Escher, B.I., Hermens, J.L., Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects (2002) Environ. Sci. Technol., 36, pp. 4201-4217; Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Petersson, G., Gaussian 09, Revision a. 02 (2009), p. 28. , gaussian. Inc., Wallingford CT 200; Galano, A., Alvarez-Idaboy, J.R., Guanosine + OH radical reaction in aqueous solution: a reinterpretation of the UV− vis data based on thermodynamic and kinetic calculations (2009) Org. Lett., 11, pp. 5114-5117; Gao, Y., An, T., Ji, Y., Li, G., Zhao, C., Eco-toxicity and human estrogenic exposure risks from OH-initiated photochemical transformation of four phthalates in water: a computational study (2015) Environ. Pollut., 206, pp. 510-517; Gao, Y., Ji, Y., Li, G., An, T., Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic environments (2014) Water Res., 49, pp. 360-370; Glaze, W.H., Kang, J.W., Advanced oxidation processes for treating groundwater contaminated with tce and pce - laboratory studies (1988) J. Am. Water Work. Assoc., 80, pp. 57-63; Goel, A., Mazur, S.J., Fattah, R.J., Hartman, T.L., Turpin, J.A., Huang, M., Rice, W.G., Inman, J.K., Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors (2002) Bioorg. Med. Chem. Lett, 12, pp. 767-770; Gong, A.S., Lanzl, C.A., Cwiertny, D.M., Walker, S.L., Lack of influence of extracellular polymeric substances (EPS) level on hydroxyl radical mediated disinfection of Escherichia coli (2011) Environ. Sci. Technol., 46, pp. 241-249; Gonzalez, C., Schlegel, H.B., An improved algorithm for reaction-path following (1989) J. Chem. Phys., 90, pp. 2154-2161; Gonzalez, C., Schlegel, H.B., Reaction path following in mass-weighted internal coordinates (1990) J. Phys. Chem., 94, pp. 5523-5527; Haag, W.R., Hoigné, J., Photo-sensitized oxidation in natural water via OH radicals (1985) Chemosphere, 14, pp. 1659-1671; Han, D., Li, J., Cao, H., He, M., Hu, J., Yao, S., Theoretical investigation on the mechanisms and kinetics of OH-initiated photooxidation of dimethyl phthalate (DMP) in atmosphere (2014) Chemosphere, 95, pp. 50-57; Hubbell, J.P., Casida, J.E., Metabolic fate of the N, N-dialkylcarbamoyl moiety of thiocarbamate herbicides in rats and corn (1977) J. Agric. Food Chem., 25, pp. 404-413; Lechuga, M., Fernández-Serrano, M., Jurado, E., Núñez-Olea, J., Ríos, F., Acute toxicity of anionic and non-ionic surfactants to aquatic organisms (2016) Ecotoxicol. Environ. Saf., 125, pp. 1-8; Lee, S.-J., Caboni, P., Tomizawa, M., Casida, J.E., Cartap hydrolysis relative to its action at the insect nicotinic channel (2004) J. Agric. Food Chem., 52, pp. 95-98; Liu, W., Li, Y., Liu, F., Jiang, W., Zhang, D., Liang, J., Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: mechanisms, degradation pathway and DFT calculation (2019) Water Res., 151, pp. 8-19; Mackay, D., Multimedia Environmental Models: the Fugacity Approach (2001), CRC press; Marenich, A.V., Cramer, C.J., Truhlar, D.G., Perspective on foundations of solvation modeling: the electrostatic contribution to the free energy of solvation (2008) J. Chem. Theory Comput., 4, pp. 877-887; Marenich, A.V., Cramer, C.J., Truhlar, D.G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions (2009) J. Phys. Chem. B, 113, pp. 6378-6396; Martin, T., Toxicity Estimation Software Tool (TEST) (2016), https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test; McDougall, P., R&D Trends in Crop Protection. IBIM Conference (2012), Vineyard Business Centre Midlothian; Meylan, W.M., Howard, P.H., Boethling, R.S., Aronson, D., Printup, H., Gouchie, S., Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient (1999) Environ. Toxicol. Chem., 18, pp. 664-672; Miertuš, S., Scrocco, E., Tomasi, J., Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects (1981) Chem. Phys., 55, pp. 117-129; Miertus, S., Tomasi, J., Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes (1982) Chem. Phys., 65, pp. 239-245; Moermond, C.T., Janssen, M.P., de Knecht, J.A., Montforts, M.H., Peijnenburg, W.J., Zweers, P.G., Sijm, D.T., PBT assessment using the revised annex XIII of REACH: a comparison with other regulatory frameworks (2012) Integr. Environ. Assess. Manag., 8, pp. 359-371; Monks, P.S., Gas-phase radical chemistry in the troposphere (2005) Chem. Soc. Rev., 34, pp. 376-395; Muñoz, A., Borrás, E., Ródenas, M., Vera, T., Pedersen, H.A., Atmospheric oxidation of a thiocarbamate herbicide used in winter cereals (2018) Environ. Sci. Technol., 52, pp. 9136-9144; Muñoz, A., Ródenas, M., Borrás, E., Vázquez, M., Vera, T., The gas-phase degradation of chlorpyrifos and chlorpyrifos-oxon towards OH radical under atmospheric conditions (2014) Chemosphere, 111, pp. 522-528; Muñoz, A., Vera, T., Ródenas, M., Borrás, E., Mellouki, A., Treacy, J., Sidebottom, H., Gas-phase degradation of the herbicide ethalfluralin under atmospheric conditions (2014) Chemosphere, 95, pp. 395-401; Muñoz, A., Vera, T., Sidebottom, H., Ródenas, M., Borrás, E., Vázquez, M., Raro, M., Mellouki, A., Studies on the atmospheric fate of propachlor (2-chloro-N-isopropylacetanilide) in the gas-phase (2012) Atmos. Environ., 49, pp. 33-40; Okuno, Y., Theoretical investigation of the mechanism of the Baeyer‐Villiger reaction in nonpolar solvents (1997) Chem. -A Eur. J., 3, pp. 212-218; Politzer, P., Truhlar, D.G., Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems (2013), Springer Science & Business Media; Prinn, R., Huang, J., Weiss, R., Cunnold, D., Fraser, P., Simmonds, P., McCulloch, A., O\'doherty, S., Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades (2001) Science, 292, pp. 1882-1888; Sancho, E., Ceron, J., Ferrando, M., Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla (2000) Ecotoxicol. Environ. Saf., 46, pp. 81-86; Tjeerdema, R.S., Crosby, D.G., Disposition, biotransformation, and detoxication of molinate (Ordram) in whole blood of the common carp (Cyprinus carpio) (1988) Pestic. Biochem. Physiol., 31, pp. 24-35; Stockholm Convention on Persistent Organic Pollutants (2001), United Nations Environment Programme Chemicals division Geneva, Switzerland; Wei, B., Sun, J., Mei, Q., An, Z., Wang, X., He, M., Theoretical study on gas-phase reactions of nitrate radicals with methoxyphenols: mechanism, kinetic and toxicity assessment (2018) Environ. Pollut., 243, pp. 1772-1780; Xia, C., Fu, L., Liu, Z., Liu, H., Chen, L., Liu, Y., Aquatic toxic analysis by monitoring fish behavior using computer vision: a recent progress (2018) J. Toxicol., 2018, pp. 1-11; Xu, T., Chen, J., Wang, Z., Tang, W., Xia, D., Fu, Z., Xie, H., Development of prediction models on base-catalyzed hydrolysis kinetics of phthalate esters with density functional theory calculation (2019) Environ. Sci. Technol., 53, pp. 5828-5837; Zhao, Y., Truhlar, D.G., Density functionals with broad applicability in chemistry (2008) Acc. Chem. Res., 41, pp. 157-167; Zhao, Y., Truhlar, D.G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals (2008) Theor. Chem. Acc., 120, pp. 215-241; Zimmerman, L.J., Valentine, H.L., Valentine, W.M., Characterization of S-(N, N-dialkylaminocarbonyl) cysteine adducts and enzyme inhibition produced by thiocarbamate herbicides in the rat (2004) Chem. Res. Toxicol., 17, pp. 258-267 [format_title_en_publication_en_pub_year] => 3edc437681339b5f35881ff1497a7ed8-687399709 [abstract_en] => Prosulfocarb (PSC) is a thiocarbamate herbicide mainly used in winter cereals and a relevant aerosol precursor under OH radicals (center dot OH) photooxidation conditions. We investigated the environmental risks, mechanisms, kinetics and products for the PSC with center dot OH by employing theoretical chemical calculations. Two reaction types of H-abstraction and center dot OH-addition reactions were taken into account. Whether in the atmosphere or aqueous particles, the most favorable pathway was the H-abstraction in the N-alkyl groups close to nitrogen atom. Subsequent reactions of primary intermediates were considered at different conditions. The total rate constants were determined as 2.62 x 10-10 cm(3) molecule-1 s-1 and 4.96 x 10-11 cm(3) molecule-1 s-1 at 298 K in atmosphere and aqueous particles, respectively. In natural water with the center dot OH concentration of 10-15-10-18 mol 1-1, the half-lives (t1/2) of PSC in the center dot OH-initiated reactions were calculated as t(1/2) = 2.40 x 10(4)-2.40 x 10(7) s. With regard to the influence on human health and the ecosystem, oxidized products of PSC were estimated to be mutagenicity negative and had no obvious bioaccumulation potential. The aquatic toxicity of PSC and its degradation products was evaluated and the assessment results showed that the degradation of PSC was a toxicityreduced process but they were still at toxic and harmful levels. [scopus_id] => 57213625566;57188588286;57200938602;57202288851;57204090518;37003581000;57211826066;9843267300;35915916100;35227399200; [from_id] => 76,73 [cauthor_ad] => [He, MX]Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China@@@[Han, DD]Heze Univ, Sch Chem & Chem Engn, Heze 274015, Peoples R China@@@[Li, ZQ]Shandong Univ, Ctr Opt Res & Engn CORE, Qingdao 266237, Peoples R China. [hx_id] => 2378,2371 [classification_pub] => EESAD [doi] => 10.1016/j.ecoenv.2020.110175 [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [title_en] => Degradation of prosulfocarb by hydroxyl radicals in gas and aqueous phase: Mechanisms, kinetics and toxicity [index_keyword] => alkyl group; herbicide; hydroxyl radical; nitrogen; prosulfocarb; thiocarbamic acid derivative; unclassified drug; water; bioaccumulation; concentration (composition); environmental degradation; herbicide; hydroxyl radical; reaction kinetics; toxicity; addition reaction; aquatic environment; aqueous solution; Article; atmosphere; bioaccumulation; chemical reaction kinetics; controlled study; degradation kinetics; ecotoxicology; environmental risk; gas; half life time; health hazard; mutagenicity; oxidation; risk; risk assessment [volume] => 191 [source_type] => 351 [pub_year] => 2020 [keyword_en] => Prosulfocarb; Degradation mechanisms; Aquatic toxicity; Half-life;; Theoretical calculation [article_id] => 810598,820124 [hints] => 1 [publisher] => ACADEMIC PRESS INC ELSEVIER SCIENCE [substance] => hydroxyl radical, 3352-57-6; nitrogen, 7727-37-9; water, 7732-18-5 [language] => English [issn] => 0147-6513 [batch] => 3422,3424 [pubmedID] => 31954924 [email] => danicahan1125@163.com; lzq@sdu.edu.cn; hemaox@sdu.edu.cn [document_No] => 110175 [format_title_en_issn_pub_year] => bc2918983664fe651c7658dd881824e6921096182 [publication_iso] => Ecotox. Environ. Safe. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [cite_wos] => 0 [check_3Y] => 0 [delivery_No] => KM3HF [format_title] => [author_fn] => Bo, Xiaofei; Sun, Jianfei; Mei, Qiong; Wei, Bo; An, Zexiu; Han, Dandan; Li, Zhiqiang; Xie, Ju; Zhan, Jinhua; He, Maoxia [pages] => 9 [publication_29] => ECOTOX ENVIRON SAFE [eissn] => 1090-2414 [publication_type] => J [get_data] => 2020-03-06 [format_publication_cn] => [keyword_plu] => THIOCARBAMATE HERBICIDES; DENSITY FUNCTIONALS; FREE-ENERGY; CHEMISTRY; OXIDATION; MOLINATE; TRANSFORMATION; METABOLISM; EXPOSURE; QSARS [fund_ab] => This work was supported financially by the National Natural Science; Foundation of China (NSFC Nos. 21777087, 21876099 and 21477065) and the; Fundamental Research Funds of Shandong University 2018JC015. [format_title_en] => bd1c995629d4d0b3a84cdb6ab967153a1049016520 [publisher_city] => SAN DIEGO [pub_date] => MAR 15 [cauthor_order] => 10,6,7 [reference_No] => 58 [cite_awos] => 0 [wos_No] => WOS:000514011400029 [sys_priority_field] => 73 [format_wos_No] => fe59a78607253398af7aec27ad76d2151498926131 [wos_sub] => Environmental Sciences; Toxicology [research_area] => Environmental Sciences & Ecology; Toxicology [cauthor_back] => He, MX@@@Han, DD@@@Li, ZQ [check_180] => 0 [publisher_ad] => 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA [format_publication_en] => e727a3b2e1111bc2c72deaa4e2559fad-1332483582 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => ecotoxicologyandenvironmentalsafety [jl_country] => 中国 [jl_keyword_en] => ,halflife,prosulfocarb,aquatictoxicity,theoreticalcalculation,degradationmechanisms [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => academicpressincelsevierscience [company_id] => 0,169,165 [author_id] => 22063,21102,25301 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 7 [name] => 李志强 [irtag] => 7 [t_index] => 7 [person_id] => 22063 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 10 [name] => 何茂霞 [irtag] => 7 [t_index] => 10 [person_id] => 21102 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 9 [name] => 占金华 [irtag] => 7 [t_index] => 0 [person_id] => 25301 ) ) [sys_subject_sort] => 0,0 [college_parent_id] => 165,169 [company_test] => Array,Array [id] => aAA003ABe-eYmRwwyAaA [tags] => 0 ) [15] => Array ( [standard_in] => School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, China; Key Laboratory of Colloid & Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong Province 250100, China [cauthor] => Luan, Yuxia(yuxialuan@sdu.edu.cn) [school_id] => 117 [scopus_No] => 2-s2.0-85073021376 [author_in] => [Tian, Hailong; Zhang, Jing; Zhang, Huiyuan; Jiang, Yue; Luan, Yuxia] Shandong Univ, Sch Pharmaceut Sci, Key Lab Chem Biol, Minist Educ, 44 West Wenhua Rd, Jinan 250012, Shandong, Peoples R China.@@@ [Song, Aixin] Shandong Univ, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China. [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073021376&doi=10.1016%2fj.cej.2019.123043&partnerID=40&md5=f1ad439007e4186ca4bd1a5c7ed53842 [tag] => 0 [author_en] => Tian, HL; Zhang, J; Zhang, HY; Jiang, Y; Song, AX; Luan, YX [format_scopus_No] => 68ca067342f78ed53be5c720677cc67b-1666371346 [format_doi] => 7f968f937ae1963bf000e8b53cd95c31-1105443321 [sys_update_time] => 2020-03-13 09:56:31 [fund_No] => National Natural Science Foundation of China (NSFC)National Natural; Science Foundation of China [21872083, 21573134]; China Postdoctoral; Science FoundationChina Postdoctoral Science Foundation [2018M642675];; Shandong Provincial Major Science & Technology Innovation Project; [2018CXGC1411] [reference] => Zheng, W., Liang, P., Xie, J., Song, C., Tang, C., Wang, Y., Yin, X., Dong, X., Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy (2019) Chem. Sci., 10, pp. 2778-2784; Zhao, H., Hu, W., Ma, H., Jiang, R., Tang, Y., Ji, Y., Lu, X., Fan, Q., Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation (2017) Adv. Funct. Mater., 27, p. 1702592; Zhu, H., Fang, Y., Miao, Q., Qi, X., Ding, D., Chen, P., Pu, K., Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy (2017) ACS Nano, 11, pp. 8998-9009; Li, Y., Liu, G., Ma, J., Lin, J., Lin, H., Sue, G., Chen, D., Hou, Z., Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy (2017) J. Control. Release, 258, pp. 95-107; Lyu, Y., Fang, Y., Miao, Q., Zhen, X., Ding, D., Pu, K., Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy (2016) ACS Nano, 10, pp. 4472-4481; Zhang, J., Liang, Y., Lin, X., Zhu, X., Yan, L., Li, S., Yang, X., Lee, C.S., Self-monitoring and self-delivery of photosensitizer-doped nanoparticles for highly effective combination cancer therapy in vitro and in vivo (2015) ACS Nano, 9, pp. 9741-9756; Chen, X., Li, Y., Li, S., Gao, M., Ren, L., Tang, B., Mitochondria-and lysosomes-targeted synergistic chemo-photodynamic therapy associated with self-monitoring by dual light-up fluorescence (2018) Adv. Funct. Mater., 28, p. 1804362; Wozniak, M., Agrawal, S., Wozniak, Z., Trzeciakowski, W., Oikowski, P.Z., Jurczyszyn, K., The effect of in vitro photodynamic therapy on increase of osteopontin and heat shock protein 70 expression in squamous cell and colon carcinoma (2019) IEEE J. Sel. Top. Quant., 25, p. 7201107; Liu, C., Qin, H., Kang, L., Chen, Z., Wang, H., Qiu, H., Ren, J., Qu, X., Graphitic carbon nitride nanosheets as a multifunctional nanoplatform for photochemical internalization-enhanced photodynamic therapy (2018) J. Mater. Chem. B, 6, pp. 7908-7915; Song, S., Zhou, F., Chen, W., Xing, D., PDT-induced HSP70 externalization up-regulates NO production via TLR2 signal pathway in macrophages (2013) FEBS Lett., 587, pp. 128-135; Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., Cao, S., Heat shock proteins and cancer (2017) Trends. Pharmacol. Sci., 38, p. 3; Diederich, C.J., Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation (2005) Int. J. Hyperthermia, 21, pp. 745-753; Moustafa, R., Ali, K., Ali, H.R., Rankin, C.R., Mostafa, A., El-sayed, Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy (2016) Biomaterials, 102, pp. 1-8; Zhou, J., Li, M., Hou, Y., Luo, Z., Chen, Q., Cao, H., Huo, R., Cai, K., Engineering of a nanosized biocatalyst for combined tumor starvation and low temperature photothermal therapy (2018) ACS Nano, 12, pp. 2858-2872; Chen, W., Luo, G.F., Lei, Q., Hong, S., Qiu, W., Liu, L., Cheng, S., Zhang, X., Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy (2017) ACS Nano, 11, pp. 1419-1431; Zhao, H., Li, L., Zhang, J., Zheng, C., Ding, K., Xiao, H., Wang, L., Zhang, Z., C–C Chemokine Ligand 2 (CCL2) recruits macrophage-membrane camouflaged hollow bismuth selenide nanoparticles to facilitate photothermal sensitivity and inhibit lung metastasis of breast cancer (2018) ACS Appl. Mater. Interfaces, 10, pp. 31124-31135; Hu, K., Miao, L., Goodwin, T.J., Li, J., Liu, Q., Huang, L., Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles (2017) ACS Nano, 11, pp. 4916-4925; Wu, Q., Deng, S., Li, L., Sun, L., Yang, X., Liu, X., Liu, L., Gong, C., Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models (2013) Nanoscale, 5, p. 12480; Ferry, D.R., Smith, A., Malkhandi, J., Fyfe, D.W., Takats, P.G.D., Anderson, D., Baker, J., Kerr, D.J., Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition (1996) Clin. Cancer Res., 2, pp. 659-668; Kale, R., Saraf, M., Juvekar, A., Tayade, P., Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin cyclodextrin binary system (2006) J. Pharm. Pharmacol., 58, pp. 1351-1358; Ei-gogary, R.I., Rubio, N., Wang, J., Ai-jamal, W.T., Bourgognon, M., Kafa, H., Naeem, M., Ai-jamal, K.T., Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo (2014) ACS Nano, 8, pp. 1384-1401; Yuan, Z., Chen, L., Fan, L., Tang, M., Yang, G., Yang, H., Du, X., Zhao, Q., Liposomal quercetin efficiently suppresses growth of solid tumors in murine models (2006) Clin. Cancer Res., 12, pp. 3193-3199; Wu, T., Yen, F., Lin, L., Tsai, T., Lin, C., Cham, T.M., Preparation, physicochemical characterization and antioxidant effects of quercetin nanoparticles (2008) Int. J. Pharm., 346, pp. 160-168; Mulholland, Ferry, P.J., Anderson, D.R., Hussain, D., Young, S.A., Cook, A.M., Hodgkin, J.E., Kerr, L.W., Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin (2001) Ann. Oncol., 12, pp. 245-248; Srivastava, A.K., Inhibition of phosphorylase kinase and tyrosine protein kinase activities by quercetin (1985) Biochem. Biophys. Res. Commun., 131, pp. 1-5; Su, S., Tian, Y., Li, Y., Ding, Y., Ji, T., Wu, M., Wu, Y., Nie, G., “Triple-Punch” strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy (2015) ACS Nano, 9, pp. 1367-1378; Shah, B.P., Pasquale, N., De, G.J., Tan, T., Ma, J., Lee, K.B., Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis (2014) ACS Nano, 8, pp. 9379-9387; Meng, Z., Wei, F., Wang, R., Xia, M., Chen, Z., Wang, H., Zhu, M., NIR-laser switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors (2016) Adv. Mater., 28, pp. 245-253; Hu, X., Tian, H., Jiang, W., Song, A., Li, Z., Luan, Y., Rational design of IR820- and Ce6-based versatile micelle for single NIR laser-induced imaging and dual-modal phototherapy (2018) Small, 14, p. 1802994; Yu, J., Javier, D., Yaseen, M.A., Nitin, N., Richards-Kortum, R., Anvari, B., Selfassembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules (2010) J. Am. Chem. Soc., 132, pp. 1929-1938; Zheng, M., Yue, C., Ma, Y., Gong, P., Zhao, P., Zheng, C., Single-step assembly of DOX/ICG loaded lipidepolymer nanoparticles for highly effective chemophotothermal combination therapy (2013) ACS Nano, 7, pp. 2056-2067; Guo, Y., Jiang, K., Shen, Z., Zheng, G., Fan, L., Zhao, R., Shao, J., A small molecule nanodrug by self-assembly of dual anticancer drugs and photosensitizer for synergistic near-Infrared cancer theranostics (2017) ACS Appl. Mater. Interfaces, 9, pp. 43508-43519; Zhang, N., Li, M., Sun, X., Jia, H., Liu, W., NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery (2018) Biomaterials, 159, pp. 25-36; Li, W., Peng, J., Tan, L., Wu, J., Shi, K., Qu, Y., Wei, X., Qian, Z., Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by lyp-1 modified docetaxel/IR820 co-loaded micelles (2016) Biomaterials, 106, pp. 119-133; Yuan, A., Qiu, X., Tang, X., Liu, W., Wu, J., Hu, Y., Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy (2015) Biomaterials, 51, pp. 184-193; He, W., Jiang, Y., Li, Q., Zhang, D., Li, Z., Luan, Y., A versatile strategy to create an active tumor-targeted chemo-photothermal therapy nanoplatform: a case of an IR-780 derivative co-assembled with camptothecin prodrug (2019) Acta Biomater., 84, pp. 356-366; Zhu, C., Pradhan, P., Huo, D., Xue, J., Shen, S., Roy, K., Xia, Y., Reconstitution of low-density lipoproteins with fatty acids for the targeted delivery of drugs into cancer cells (2017) Angew. Chem. Int. Ed., 56, pp. 10399-10402; Zhu, C., Huo, D., Chen, Q., Xue, J., Shen, S., Xia, Y., A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release (2017) Adv. Mater., 29, p. 1703702; Liu, G., Zhang, S., Shi, Y., Huang, X., Tang, Y., Chen, P., Si, W., Dong, X., “Wax-Sealed” theranostic nanoplatform for enhanced afterglow imaging-guided photothermally triggered photodynamic therapy (2018) Adv. Funct. Mater., 28, p. 1804317; Li, N., Xu, N., Cheng, F., Zhang, J., Huang, Y., Zhu, G., Shen, J., He, X., Perfluorocarbon nanocapsules improve hypoxic microenvironment for the tumor ultrasound diagnosis and photodynamic therapy (2018) J. Biomed. Nanotechnol., 14, pp. 2162-2171; Kim, T., Jeon, H.M., Le, H.T., Kim, T.W., Kang, C., Kim, J.S., A biotin-guided fluorescent-peptide drug delivery system for cancer treatment (2014) Chem. Commun., 50, pp. 7690-7693; Jung, D.B., Maiti, S., Lee, J.H., Lee, J.H., Kim, J.S., Rational design of biotin-disulfide-coumarin conjugates: a cancer targeted thiol probe and bioimaging (2014) Chem. Commun., 50, pp. 3044-3047; Ren, W., Han, J., Uhm, S., Jang, Y., Kang, C., Kim, J., Kim, J.S., Recent development of biotin conjugation in biological imaging, sensing, and target delivery (2015) Chem. Commun., 51, pp. 10403-10418; Park, S., Kim, E., Kim, W.Y., Kang, C., Kim, J.S., Biotin-guided anticancer drug delivery with acidity-triggered drug release (2015) Chem. Commun., 51, pp. 9343-9345; Zhang, D., Zhang, J., Li, Q., Tian, H.L., pH- and enzyme-sensitive IR820-paclitaxel conjugate self-assembled nanovehicles for near-infrared fluorescence imaging-guided chemo-photothermal therapy (2018) ACS Appl. Mater. Interfaces, 10, pp. 30092-30102; Patel, H.M., Moghimi, S.M., Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system-the concept of tissue specificity (1998) Adv. Drug Delivery Rev., 32, pp. 45-60; Zhu, M., Nie, G., Meng, H., Xia, T., Nel, A., Zhao, Y., Physicochemical properties determine nanomaterial cellular uptake, transport, and fate (2013) Acc. Chem. Res., 46, pp. 622-631; Owens, D.E., Peppas, N.A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles (2006) Int. J. Pharm., 307, pp. 93-102; Duan, X., Li, X., Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, trafficking (2013) Small, 9, pp. 1521-1532; Calatayud, M.P., Sanz, B., Raffa, V., Riggio, C., Ibarra, M.R., Goya, G.F., The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake (2014) Biomaterials, 35, pp. 6389-6399; Han, H.J., Wang, H.B., Chen, Y.J., Li, Z.H., Wang, Y., Jin, Q., Ji, J., Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy (2016) Nanoscale, 8, pp. 283-291; Li, J., Wang, A., Zhao, L., Dong, Q., Wang, M., Xu, H., Yan, X., Bai, S., Self-assembly of monomeric hydrophobic photosensitizers with short peptides forming photodynamic nanoparticles with real time tracking property and without the need of release in vivo (2018) ACS Appl. Mater. Interfaces, 10, pp. 28420-28427; Li, S., Zou, Q., Li, Y., Yuan, C., Xing, R., Yan, X., Smart peptide-based supramolecular photodynamic metallo nanodrugs designed by multicomponent coordination self-assembly (2018) J. Am. Chem. Soc., 140, pp. 10794-10802; Li, Y., Zou, Q., Yuan, C., Li, S., Xing, R., Yan, X., Amino acid coordination driven self-assembly for enhancing both the biological stability and tumor accumulation of curcumin (2018) Angew. Chem. Int. Ed., 57, pp. 17084-17088; Zhang, R., Xing, R., Jiao, T., Ma, K., Chen, C., Ma, G., Yan, X., Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy (2016) ACS Appl. Mater. Interfaces, 8, pp. 13262-13269; Rajagopal, K., Mahmud, A., Christian, D.A., Pajerowski, J.D., Brown, A.E., Loverde, S.M., Discher, D.E., Curvature-coupled hydration of semicrystalline polymer amphiphiles yields flexible worm micelles but favors rigid vesicles: polycaprolactone-based block copolymers (2010) Macromolecules, 43, p. 9736 [format_title_en_publication_en_pub_year] => 3a9b6877e0bb4759d805b8aa340389ea-1425514006 [abstract_en] => The side effects of anticancer drugs and tumor tolerance from heat shock protein expression are still a bottleneck for the current chemo-phototherapy. Although quercetin (Qu) is a naturally low-side effect anticancer drug and heat shock protein inhibitor for tailoring phototherapy, it is largely restricted by poor water solubility. Moreover, the near-infrared dye IR780-iodide (IR780), as a promising phototherapy agent, is also restricted from clinical applications due to its poor water solubility. Herein, we rationally designed a robust low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembly of biotin-tailored IR780 (B780) and quercetin, defined as B780/Qu nanoparticles (B780/Qu NPs), which efficiently solved the poor water solubility of both IR780 and Qu. Moreover, the B780 endowed B780/Qu NPs with superior active tumor-targeted property and pH-responsive drug delivery. Thanks to the combination of chemo-phototherapy, the B780/Qu NPs with near infrared (NIR) laser irradiation exhibited excellent anti-tumor efficacy. Therefore, our B780/Qu NPs are very promising as an efficient low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform against tumors. [scopus_id] => 57203765612;55900054200;57145702500;56173667300;55888336600;26643318000; [from_id] => 76,74,73 [cauthor_ad] => [Luan, YX]Shandong Univ, Sch Pharmaceut Sci, Key Lab Chem Biol, Minist Educ, 44 West Wenhua Rd, Jinan 250012, Shandong, Peoples R China. [hx_id] => 2376,2378,2371 [classification_pub] => CMEJA [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [title_en] => Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin [index_keyword] => Coenzymes; Drug interactions; Flavonoids; Infrared devices; Phenols; Solubility; Tumors; Anti-tumor efficacy; Clinical application; Heat shock protein; IR780; Near-infrared dyes; Near-infrared lasers; Phototherapy; Quercetin; Drug delivery [volume] => 382 [source_type] => 351 [pub_year] => 2020 [keyword_en] => Chemo-phototherapy; IR780; Quercetin; Heat shock protein inhibitor;; Co-assembly [article_id] => 808829,810436,815027 [hints] => 1 [publisher] => ELSEVIER SCIENCE SA [doi] => 10.1016/j.cej.2019.123043 [language] => English [issn] => 1385-8947 [batch] => 3422,3418,3424 [publication_en] => CHEMICAL ENGINEERING JOURNAL [email] => yuxialuan@sdu.edu.cn [document_No] => 123043 [format_title_en_issn_pub_year] => 835325aeef141ab64099057337185947-1411404202 [publication_iso] => Chem. Eng. J. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [format_title] => [author_fn] => Tian, Hailong; Zhang, Jing; Zhang, Huiyuan; Jiang, Yue; Song, Aixin; Luan, Yuxia [ei_No] => 20194107524401 [main_eword] => Drug delivery [format_publication_cn] => [format_title_en] => 3afeea38e1328fb62c2f117e355a614a563964517 [pub_date] => FEB 15 [classification_No] => 461.2 Biological Materials and Tissue Engineering - 461.6 Medicine and Pharmacology - 801.4 Physical Chemistry - 804.1 Organic Compounds [cauthor_order] => 6,6 [uncontrolled_terms] => Anti-tumor efficacy - Clinical application - Heat shock protein - IR780 - Near-infrared dyes - Near-infrared lasers - Phototherapy - Quercetin [controlled_terms] => Coenzymes - Drug interactions - Flavonoids - Infrared devices - Phenols - Solubility - Tumors [reference_No] => 56 [format_ei_No] => 463721cafc3f3ebbea57eb8ae010b732-1385214726 [sys_priority_field] => 73 [cauthor_back] => Luan, Yuxia@@@Luan, YX [format_publication_en] => 5f8cb3da02830549f2e59fe2ee28eac9336657976 [cite_wos] => 0 [check_3Y] => 22 [delivery_No] => JW9QV [pages] => 12 [publication_29] => CHEM ENG J [eissn] => 1873-3212 [publication_type] => J [get_data] => 2020-03-06 [keyword_plu] => POLYMER NANOPARTICLES; CANCER-THERAPY; DRUG-DELIVERY; BREAST-CANCER; CARRIER-FREE; GROWTH; PHARMACOKINETICS; MICROENVIRONMENT; BIODISTRIBUTION; PHOTOSENSITIZER [fund_ab] => This work was supported by the National Natural Science Foundation of; China (NSFC, No. 21872083 and 21573134), China Postdoctoral Science; Foundation (2018M642675), Shandong Provincial Major Science & Technology; Innovation Project (2018CXGC1411). [publisher_city] => LAUSANNE [cite_awos] => 0 [wos_No] => WOS:000503381200159 [format_wos_No] => e7fc6462e84f7a3c776e7b84c62bae10-1004719991 [wos_sub] => Engineering, Environmental; Engineering, Chemical [research_area] => Engineering [check_180] => 22 [publisher_ad] => PO BOX 564, 1001 LAUSANNE, SWITZERLAND [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => chemicalengineeringjournal [jl_country] => 中国 [jl_keyword_en] => ,ir780,heatshockproteininhibitor,quercetin,chemophototherapy,coassembly [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => elseviersciencesa [company_id] => 0,174 [author_id] => 21427,25473,25475,25474,23343,25480,25481,25482,25483 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 姜悦 [irtag] => 7 [t_index] => 0 [person_id] => 21427 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 宋爱新 [irtag] => 7 [t_index] => 0 [person_id] => 23343 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 张静 [irtag] => 7 [t_index] => 0 [person_id] => 25483 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 张静 [irtag] => 7 [t_index] => 0 [person_id] => 25481 ) [4] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 张静 [irtag] => 7 [t_index] => 0 [person_id] => 25482 ) [5] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 张静 [irtag] => 7 [t_index] => 0 [person_id] => 25480 ) [6] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 张晶 [irtag] => 7 [t_index] => 0 [person_id] => 25475 ) [7] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 张晶 [irtag] => 7 [t_index] => 0 [person_id] => 25473 ) [8] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 张晶 [irtag] => 7 [t_index] => 0 [person_id] => 25474 ) ) [sys_subject_sort] => 0 [college_parent_id] => 174 [company_test] => Array [id] => 4gA103ABe-eYmRwwJhsm [tags] => 0 ) [16] => Array ( [standard_in] => Environment Research Institute, Shandong University, Qingdao, 266237, China [cauthor] => Zhang, Qingzhu(zqz@sdu.edu.cn) [school_id] => 117 [scopus_No] => 2-s2.0-85076880956 [author_in] => [Zhou, Jie; Zhu, Ledong; Chen, Jinfeng; Wang, Wei; Zhang, Ruiming; Li, Yanwei; Zhang, Qingzhu; Wang, Wenxing] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China. [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076880956&doi=10.1016%2fj.scitotenv.2019.135897&partnerID=40&md5=38ec2cf691a9ca89fead1d0b02c5ae35 [tag] => 0 [author_en] => Zhou, J; Zhu, LD; Chen, JF; Wang, W; Zhang, RM; Li, YW; Zhang, QZ; Wang, WX [publication_en] => SCIENCE OF THE TOTAL ENVIRONMENT [format_scopus_No] => ec64be066d1c07a7dbff8341f7374b46-278198860 [format_doi] => 7d1412c6d25d6977258332ac7ba525451211392823 [sys_update_time] => 2020-03-13 09:56:08 [fund_No] => National Natural Science Foundation of ChinaNational Natural Science; Foundation of China [21577082]; Taishan Scholars [ts201712003] [reference] => Abassi, H., Ayed-Boussema, I., Shirley, S., Abid, S., Bacha, H., Micheau, O., The mycotoxin Zearalenone enhances cell proliferation, colony formation and promotes cell migration in the human colon carcinoma cell line HCT116 (2016) Toxicol. Lett., 254, pp. 1-7; Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C., Electronic structure calculations on workstation computers: the program system turbomole (1989) Chem. Phys. Lett., 162, pp. 165-169; Bader, R.F.W., A theory of molecules. (book reviews: atoms in molecules. A quantum theory.) (1991) Science, 252, pp. 1566-1567; Bader, R.F., Carroll, M.T., Cheeseman, J.R., Chang, C., Properties of atoms in molecules: atomic volumes (1987) J. Am. Chem. Soc., 109, pp. 7968-7979; Bandera, E.V., Chandran, U., Buckley, B., Lin, Y., Isukapalli, S., Marshall, I., Urinary mycoestrogens, body size and breast development in New Jersey girls (2011) Sci. Total Environ., 409, pp. 5221-5227; Billeter, S.R., Turner, A.J., Thiel, W., Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates (2000) Phys. Chem. Chem. Phys., 2, pp. 2177-2186; Bucheli, T.D., Erbs, M., Hartmann, N., Vogelgsang, S., Wettstein, F.E., Forrer, H., Estrogenic mycotoxins in the environment (2005) Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 96, p. 386; Burke, K., Werschnik, J., Gross, E.K., Time-dependent density functional theory: past, present, and future (2005) J. Chem. Phys., 123. , B864-284; Campos, C.T., Jorge, F.E., Triple zeta quality basis sets for atoms Rb through Xe: application in CCSD(T) atomic and molecular property calculations (2013) Mol. Phys., 111, pp. 167-173; Case, D., Ben-Shalom, I., Brozell, S., Cerutti, D., Cheatham, I.I.I.T., Cruzeiro, V., AMBER 2018: San Francisco (2018), California; Cooper, A.M., Kästner, J., Averaging techniques for reaction barriers in QM/MM simulations (2015) Chemphyschem, 15, pp. 3264-3269; Diamantikandarakis, E., Bourguignon, J.P., Giudice, L.C., Hauser, R., Prins, G.S., Soto, A.M., Endocrine-disrupting chemicals: an Endocrine Society scientific statement (2009) Endocr. Rev., 30, p. 293; El-Sharkawy, S., Abul-Hajj, Y.J., Microbial cleavage of zearalenone (1988) Xenobiotica, 18, pp. 365-371; Fu, Z., Wang, Y., Chen, J., Wang, Z., Wang, X., How PBDEs are transformed into dihydroxylated and dioxin metabolites catalyzed by the active center of cytochrome P450s: a DFT study (2016) Environmental Science & Technology, 50. , (acs.est.6b00524); Götz, A., Williamson, M.J., Dong, X., Poole, D., Grand, S.L., Walker, R.C., Routine microsecond moleculardynamics simulations with AMBER on GPUs. 1. Generalized born (2012) Journal of Chemical Theory & Computation, 8, pp. 1542-1555; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132, p. 154104; Holmquist, M., Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms (2000) Curr. Protein Pept. Sci., 1; Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2010) Proteins-structure Function & Bioinformatics, 65, pp. 712-725; Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38; Johnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., Yang, W., Revealing noncovalent interactions (2010) J. Am. Chem. Soc., 132, pp. 6498-6506; Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J.chem.phys, 79, pp. 926-935; Kosawang, C., Karlsson, M., Vél?z, H., Rasmussen, P.H., Collinge, D.B., Jensen, B., Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum (2014) Fungal Biology, 118, pp. 364-373; Kowalska, K., Habrowska-Górczyńska, D.E., Piastowska-Ciesielska, A.W., Zearalenone as an endocrine disruptor in humans (2016) Environmental Toxicology & Pharmacology, 48, pp. 141-149; Li, Y., Shi, X., Zhang, Q., Hu, J., Chen, J., Wang, W., Computational evidence for the detoxifying mechanism of epsilon class glutathione transferase toward the insecticide DDT (2014) Environmental Science & Technology, 48, p. 5008; Li, Y., Zhang, R., Du, L., Zhang, Q., Wang, W., Catalytic mechanism of C–F bond cleavage: insights from QM/MM analysis of fluoroacetate dehalogenase (2016) Catalysis Science & Technology, 6, pp. 73-80; Lu, T., Chen, F., Multiwfn: a multifunctional wavefunction analyzer (2012) J. Comput. Chem., 33, pp. 580-592; Lu, T., Chen, F., Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm (2012) Journal of Molecular Graphics & Modelling, 38, pp. 314-323; Lyagin, I., Efremenko, E., Enzymes for detoxification of various mycotoxins: origins and mechanisms of catalytic action (2019) Molecules, 24, p. 2362; Manzetti, S., Lu, T., The geometry and electronic structure of Aristolochic acid: possible implications for a frozen resonance (2013) J. Phys. Org. Chem., 26, pp. 473-483; Maragos, C.M., Zearalenone occurrence and human exposure (2010) World Mycotoxin J., 3, pp. 369-383; Metz, S., Kästner, J., Sokol, A.A., Keal, T.W., Sherwood, P., ChemShell—a modular software package for QM/MM simulations (2014) Wiley Interdisciplinary Reviews Computational Molecular Science, 4, pp. 101-110; Mordasini, T.Z., Thiel, W., Combined quantum mechanical and molecular mechanical approaches (1996) Chimia, 52, pp. 288-291; Murray, J.S., Politzer, P., Electrostatic Potentials: Chemical Applications (2002); Murray, J.S., Politzer, P., The electrostatic potential: an overview (2011) Wiley Interdisciplinary Reviews Computational Molecular Science, 1, pp. 153-163; Olsson, M.H.M., Søndergaard, C.R., Rostkowski, M., Jensen, J.H., PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions (2011) Journal of Chemical Theory & Computation, 7, pp. 525-537; Ono, S., Naylor, M.R., Townsend, C.E., Okumura, C., Lokey, R.S., Conformation and permeability: cyclic hexapeptide diastereomers (2019) J. Chem. Inf. Model., 59, pp. 2952-2963; Peng, W., Ko, T.-P., Yang, Y., Zheng, Y., Chen, C.-C., Zhu, Z., Crystal structure and substrate-binding mode of the mycoestrogen-detoxifying lactonase ZHD from Clonostachys rosea (2014) RSC Adv., 4, pp. 62321-62325; Richard, L., Harvey, J.N., Mulholland, A.J., Compound I reactivity defines alkene oxidation selectivity in cytochrome P450cam (2010) J. Phys. Chem. B, 114, pp. 1156-1162; Rókus, K., Csilla, K., Sándor, S., Mátyás, C., Balázs, K., József, K., A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain (2012) PLoS One, 7, p. e43608; Salomon-Ferrer, R., Götz, A.W., Poole, D., Le, G.S., Walker, R.C., Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald (2013) Journal of Chemical Theory & Computation, 9, pp. 3878-3888; Schmider, H.L., Becke, A.D., Chemical content of the kinetic energy density (2000) Journal of Molecular Structure Theochem, 527, pp. 51-61; Sherwood, P., Vries, D.E., Alex, H., Martyn, F., Schreckenbach, QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis (2003) Theochem, 632, pp. 1-28; Skakkebaek, N.E., Rajpert-De Meyts, E., Buck Louis, G.M., Toppari, J., Andersson, A.-M., Eisenberg, M.L., Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility (2016) Physiol. Rev., 96, pp. 55-97; Smith, W., Forester, T.R., DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package (1996) J. Mol. Graph., 14, pp. 136-141; Sun, X., He, X., siyu Xue, K., Li, Y., Xu, D., Qian, H., Biological detoxification of zearalenone by Aspergillus niger strain FS10 (2014) Food Chem. Toxicol., 72, pp. 76-82; Sun, L., Yang, H., Cai, Y., Li, W., Tang, Y., In silico prediction of endocrine disrupting chemicals using single-label and multilabel models (2019) J. Chem. Inf. Model., 59; Takahashi-Ando, N., Ohsato, S., Shibata, T., Hamamoto, H., Yamaguchi, I., Kimura, M., Metabolism of zearalenone by genetically modified organisms expressing the detoxification gene from Clonostachys rosea (2004) Appl. Environ. Microbiol., 70, pp. 3239-3245; Thomas, Z.R., Brown, T.R., Doan, L.L., Gore, A.C., Skakkebaek, N.E., Soto, A.M., Endocrine-disrupting chemicals and public health protection: a statement of principles from the endocrine society (2012) Endocrinology, 9; Tian, L.U., Qinxue, C., Revealing molecular electronic structure via analysis of valence electron density (2018) Acta Phys. -Chim. Sin., 34, pp. 503-513; Tubiana, T., Carvaillo, J.C., Boulard, Y., Bressanelli, S., TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries (2018) J. Chem. Inf. Model., 58, pp. 2178-2182; Utermark, J., Karlovsky, P., Role of zearalenone lactonase in protection of gliocladium roseum from fungitoxic effects of the mycotoxin zearalenone (2007) Appl. Environ. Microbiol., 73, pp. 637-642; Vries, A.H.D., Sherwood, P., Collins, S.J., Rigby, A.M., Marcello Rigutto, A., Kramer, G.J., Zeolite structure and reactivity by combined quantum-chemical−classical calculations (1999) J. Phys. Chem. B, 103, pp. 6133-6141; Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general amber force field (2004) J. Comput. Chem., 25, p. 1157; Wang, X., Chen, J., Tang, X., Wang, J., Zhu, L., Zhang, W., Biodegradation mechanism of polyesters by hydrolase from Rhodopseudomonas palustris: an in silico approach (2019) Chemosphere, 231, pp. 126-133; Waśkiewicz, A., Gromadzka, K., Bocianowski, J., Pluta, P., Goliński, P., Zearalenone contamination of the aquatic environment as a result of its presence in crops (2012) Arhiv za higijenu rada i toksikologiju, 63, pp. 429-434; Xu, Z., Liu, W., Chen, C.C., Li, Q., Guo, R.-T., Enhanced α-Zearalenol hydrolyzing activity of a mycoestrogen-detoxifying lactonase by structure-based engineering (2016) ACS Catal., 6; Yang, W.-C., Hsu, T.-C., Cheng, K.-C., Liu, J.-R., Expression of theClonostachys rosealactonohydrolase gene byLactobacillus reuterito increase its zearalenone-removing ability (2017) Microb. Cell Factories, 16, p. 69; Yuan, D., Li, Y., Ni, Z., Pulay, P., Li, S., Benchmark relative energies for large water clusters with the generalized energy-based fragmentation method (2017) Journal of Chemical Theory & Computation, 13; Zheng, Y., Liu, W., Chen, C.-C., Hu, X., Guo, R.-T., Crystal structure of a mycoestrogen-detoxifying lactonase from Rhinocladiella mackenziei: molecular insight into ZHD substrate selectivity (2018) ACS Catal., 8, pp. 4294-4298; Zhu, L., Tang, X., Li, Y., Zhang, R., Zhang, Q., Wang, W., QM/MM study of the reaction mechanism of Cl-cis,cis-muconate with muconate lactonizing enzyme (2018) Bioorg. Chem., 80, pp. 453-460; Zhuang, S., Wang, H., Ding, K., Wang, J., Pan, L., Lu, Y., Interactions of benzotriazole UV stabilizers with human serum albumin: atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations (2016) Chemosphere, 144, pp. 1050-1059; Zinedine, A., Soriano, J.M., Moltó, J.C., Mañes, J., Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin (2007) Food & Chemical Toxicology, 45, pp. 1-18 [format_title_en_publication_en_pub_year] => 2ad8562ec52cce79b2917623e9a51bf3-1042152459 [abstract_en] => The danger of zearalenone (ZEN) as an endocrine disruptor to humans and the environment has aroused increasing attention. In this study, we implemented the quantummechanics/molecularmechanics (QM/MM) method to investigate the degradation mechanism of ZEN hydrolase (RmZHD) toward ZEN at the atomic level. The degradation process involves two concerted reaction pathways, where the active site contains a Ser-His-Glu triplet as a proton donor. With the Boltzmann-weighted average potential barriers of 18.1 and 21.5 kcal/mol, the process undergoes proton transfer and nucleophilic-substituted ring opening to form a hydroxyl product. Non-covalent interaction analyses elucidated hydrogen bonding between key amino acids with ZEN. The electrostatic influence analysis of 16 amino acids proposes residues Asp34 and His128 as the possible mutation target for future mutation design of enzyme RmZHD. An in-depth investigation of the protein environment of RmZHD can improve the bioremediation efficiency of endocrine disrupting chemicals. (C) 2019 Published by Elsevier B.V. [scopus_id] => 57214425657;56071071000;57206952044;57208785385;56510517100;54795483300;7407969381;35975306400; [from_id] => 76,74,73 [cauthor_ad] => [Zhang, QZ]Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China. [hx_id] => 2376,2378,2371 [classification_pub] => STEVA [doi] => 10.1016/j.scitotenv.2019.135897 [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [title_en] => Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study [index_keyword] => Amino acids; Bioremediation; Degradation; Endocrine disrupters; Hydrogen bonds; Hydrolases; Molecular modeling; Quantum theory; Degradation mechanism; Degradation process; Endocrine disrupting chemicals; Endocrine disruptor; Non-covalent interaction; Quantum mechanics/molecular mechanics; RmZHD; Zearalenone; Mechanics; amino acid derivative; aspartic acid; endocrine disruptor; glutamine; histidine; hydrogen; hydrolase; hydroxyl group; lactone derivative; proton; serine; unclassified drug; zearalenone; zearalenone hydrolase; degradation; endocrine disruptor; experimental study; hydroxyl radical; laboratory method; molecular analysis; mutation; quantum mechanics; Article; bioremediation; chemical bond; chemical interaction; chemical structure; enzymatic degradation; enzyme active site; fungus; hydrogen bond; molecular dynamics; molecular mechanics; mutation; nonhuman; nucleophilicity; priority journal; proton transport; quantum mechanics; Rhinocladiella mackenziei; ring opening; static electricity; substitution reaction [volume] => 709 [source_type] => 351 [pub_year] => 2020 [keyword_en] => Zearalenone; RmZHD; Quantum mechanics/molecular mechanics [article_id] => 808431,820113,810594 [hints] => 1 [publisher] => ELSEVIER [substance] => aspartic acid, 56-84-8, 6899-03-2; glutamine, 56-85-9, 6899-04-3; histidine, 645-35-2, 7006-35-1, 71-00-1; hydrogen, 12385-13-6, 1333-74-0; hydrolase, 9027-41-2; proton, 12408-02-5, 12586-59-3; serine, 56-45-1, 6898-95-9; zearalenone, 17924-92-4 [language] => English [issn] => 0048-9697 [batch] => 3422,3418,3424 [pubmedID] => 31887512 [email] => zqz@sdu.edu.cn [document_No] => 135897 [format_title_en_issn_pub_year] => 2ada7a45884f2fce055563e513e14d62108710958 [publication_iso] => Sci. Total Environ. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [format_title] => [author_fn] => Zhou, Jie; Zhu, Ledong; Chen, Jinfeng; Wang, Wei; Zhang, Ruiming; Li, Yanwei; Zhang, Qingzhu; Wang, Wenxing [ei_No] => 20195207931776 [eissn] => 1879-1026 [main_eword] => Mechanics [format_publication_cn] => [format_title_en] => b641e727497dcf30105bc06ab8939e76-1168335339 [pub_date] => MAR 20 [classification_No] => 454.2 Environmental Impact and Protection - 461.7 Health Care - 801.4 Physical Chemistry - 802.2 Chemical Reactions - 804.1 Organic Compounds - 931 Classical Physics; Quantum Theory; Relativity [cauthor_order] => 7,7 [uncontrolled_terms] => Degradation mechanism - Degradation process - Endocrine disrupting chemicals - Endocrine disruptor - Non-covalent interaction - Quantum mechanics/molecular mechanics - RmZHD - Zearalenone [controlled_terms] => Amino acids - Bioremediation - Degradation - Endocrine disrupters - Hydrogen bonds - Hydrolases - Molecular modeling - Quantum theory [reference_No] => 62 [format_ei_No] => 7aa81fe446134fe90b1f7342ea925106-717242427 [sys_priority_field] => 73 [cauthor_back] => Zhang, Qingzhu@@@Zhang, QZ [format_publication_en] => 0f2df97cbbe2943da60d0d67f555106c1587230076 [cite_wos] => 0 [check_3Y] => 10 [delivery_No] => KJ8BS [pages] => 10 [publication_29] => SCI TOTAL ENVIRON [publication_type] => J [get_data] => 2020-03-06 [keyword_plu] => MOLECULAR-DYNAMICS SIMULATIONS; ELECTRONIC-STRUCTURE; CLONOSTACHYS-ROSEA; DETOXIFICATION; AMBER; ENVIRONMENT; METABOLISM; LACTONASE; GEOMETRY; INSIGHTS [fund_ab] => The work was financially supported by (National Natural Science; Foundation of China, project Nos. 21577082) and Taishan Scholars (No.; ts201712003). [publisher_city] => AMSTERDAM [cite_awos] => 0 [wos_No] => WOS:000512281700029 [format_wos_No] => a393c838e6003e1a88b3941989a8360d-479920777 [wos_sub] => Environmental Sciences [research_area] => Environmental Sciences & Ecology [check_180] => 10 [publisher_ad] => RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => scienceofthetotalenvironment [jl_country] => 中国 [jl_keyword_en] => quantummechanicsmolecularmechanics,rmzhd,zearalenone [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => elsevier [company_id] => 0,165 [author_id] => 21970,24212,24213,24211,24205,24214,25608,24236 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李延伟 [irtag] => 7 [t_index] => 0 [person_id] => 21970 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 8 [name] => 王文兴 [irtag] => 7 [t_index] => 0 [person_id] => 24236 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 王伟 [irtag] => 7 [t_index] => 0 [person_id] => 24211 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 王伟 [irtag] => 7 [t_index] => 0 [person_id] => 24212 ) [4] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 王伟 [irtag] => 7 [t_index] => 0 [person_id] => 24213 ) [5] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 王伟 [irtag] => 7 [t_index] => 0 [person_id] => 24214 ) [6] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 王巍 [irtag] => 7 [t_index] => 0 [person_id] => 24205 ) [7] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 7 [name] => 张庆竹 [irtag] => 7 [t_index] => 7 [person_id] => 25608 ) ) [sys_subject_sort] => 0 [college_parent_id] => 165 [company_test] => Array [id] => XQA003ABe-eYmRwwyAaA [tags] => 0 ) [17] => Array ( [standard_in] => School of Energy and Power Engineering, Shandong University, Jinan, 250061, China; State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China [cauthor] => Li, Y(liyj@sdu.edu.cn) [school_id] => 117 [scopus_No] => 2-s2.0-85076122376 [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076122376&doi=10.1016%2fj.psep.2019.11.022&partnerID=40&md5=60b150bcbe00707f78a5db2832735edc [tag] => 0 [author_en] => Wang, X; Li, YJ; Zhang, W; Zhao, JL; Wang, ZY [format_scopus_No] => be6f168fe2f485de7cd8c28833bb7758394027778 [format_doi] => 3f374d0f681994386d4ca77859883fa7-1403574771 [author_in] => [Wang, Xin; Li, Yingjie; Zhang, Wan; Zhao, Jianli] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China.@@@ [Wang, Zeyan] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. [fund_No] => National Natural Science Foundation of ChinaNational Natural Science; Foundation of China [51876105]; Fundamental Research Funds of Shandong; University [2018JC039]; Joint Foundation of National Natural Science; Foundation of China and Shanxi Province for coal-based low carbon; [U1510130] [reference] => Aarna, I., Suuberg, E.M., A review of the kinetics of the nitric oxide-carbon reaction (1997) Fuel, 76, pp. 475-491; Adewuyi, Y.G., Khan, M.A., Simultaneous NO and SO2 removal by aqueous persulfate activated by combined heat and Fe2+: experimental and kinetic mass transfer model studies (2018) Environ. Sci. Pollut. Res.; Adewuyi, Y.G., Sakyi, N.Y., Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature (2013) Ind. Eng. Chem. Res., 52, pp. 11702-11711; Adewuyi, Y.G., Sakyi, N.Y., Arif Khan, M., Simultaneous removal of NO and SO2 from flue gas by combined heat and Fe2+ activated aqueous persulfate solutions (2018) Chemosphere, 193, pp. 1216-1225; Chen, C., Cao, Y., Liu, S., Chen, J., Jia, W., SCR catalyst doped with copper for synergistic removal of slip ammonia and elemental mercury (2018) Fuel Process. Technol., 181, pp. 268-278; Chen, D., Zhang, Z., Li, Z., Lv, Z., Cai, N., Optimizing in-situ char gasification kinetics in reduction zone of pulverized coal air-staged combustion (2018) Combust. Flame, 194, pp. 52-71; Chen, H., Liu, W., Jian, S., Hu, Y., Wang, W., Yang, Y., Yao, S., Liu, W., Routine investigation of CO2 sorption enhancement for extruded-spheronized CaO-based pellets (2017) Energy Fuels, 31, pp. 9660-9667; Chen, Z., Dong, H., Yu, H., Yu, H., In-situ electrochemical flue gas desulfurization via carbon black-based gas diffusion electrodes: performance, kinetics and mechanism (2017) Chem. Eng. J., 307, pp. 553-561; Cheng, J., Zhou, J., Liu, J., Cao, X., Cen, K., Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes (2009) Energy Fuels, 23, pp. 2506-2516; Cheng, X., Cheng, Y., Wang, Z., Ma, C., Comparative study of coal based catalysts for NO adsorption and NO reduction by CO (2018) Fuel, 214, pp. 230-241; Chung, S.J., Moon, I.S., An improved method of removal for high concentrations of NO by electro-scrubbing process (2013) Process Saf. Environ. Prot., 91, pp. 153-158; Do, H.S., Tran, T.S., Han, Z., Zeng, X., Gao, S., Xu, G., Synergetic NO reduction by biomass pyrolysis products simulating their reburning in circulating fluidized bed decoupling combustion (2018) Chinese J. Chem. Eng.; Dong, L., Gao, S., Song, W., Xu, G., Experimental study of NO reduction over biomass char (2007) Fuel Process. Technol., 88, pp. 707-715; Fan, F., Zhang, S., Wang, W., Yan, J., Su, M., Numerical investigation of PM2.5 size enlargement by heterogeneous condensation for particulate abatement (2019) Process Saf. Environ. Prot., 125, pp. 197-206; Fan, W., Li, Y., Guo, Q., Chen, C., Wang, Y., Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal (2017) Energy, 125, pp. 417-426; Grasa, G.S., Abanades, J.C., CO2 capture capacity of CaO in long series of carbonation/calcination cycles (2006) Ind. Eng. Chem. Res., 45, pp. 8846-8851; Han, Z., Zeng, X., Yao, C., Wang, Y., Xu, G., Comparison of direct combustion in a circulating fluidized bed system and decoupling combustion in a dual fluidized bed system for distilled spirit lees (2016) Energy Fuels, 30, pp. 1693-1700; Hao, R., Zhao, Y., Yuan, B., Zhou, S., Yang, S., Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO (2016) J. Hazard. Mater., 318, pp. 224-232; Hu, Z., Jiang, E., Ma, X., Numerical simulation on operating parameters of SNCR process in a municipal solid waste incinerator (2019) Fuel, 245, pp. 160-173; Huang, R., Yu, R., Wu, H., Pan, D., Zhang, Y., Yang, L., Investigation on the removal of SO3 in ammonia-based WFGD system (2016) Chem. Eng. J., 289, pp. 537-543; Sun, J., Liu, W., Wang, W., Hu, Y., Yang, X., Chen, H., Yang, P., Xu, M., CO2 sorption enhancement of extruded–spheronized CaO-based pellets by sacrificial biomass templating technique (2016) Energy Fuels, 30, pp. 9605-9612; Karlström, O., Perander, M., DeMartini, N., Brink, A., Hupa, M., Role of ash on the NO formation during char oxidation of biomass (2017) Fuel, 190, pp. 274-280; Kawatra, S.K., Ripke, S.J., Pelletizing steel mill desulfurization slag (2002) Int. J. Miner. Process., 65, pp. 165-175; Kordylewski, W., Zacharczuk, W., Hardy, T., Kaczmarczyk, J., The effect of the calcium in lignite on its effectiveness as a reburn fuel (2005) Fuel, 84, pp. 1110-1115; Lai, H.C., Ma, H.W., Chen, C.R., Hsiao, M.C., Pan, B.H., Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5 (2019) Atmos. Environ., 212, pp. 116-127; Lau, L.C., Lee, K.T., Mohamed, A.R., Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: optimization study (2010) J. Hazard. Mater., 183, pp. 738-745; Li, G., Li, S., Huang, Q., Yao, Q., Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace (2015) Fuel, 143, pp. 430-437; Li, S., Ge, Y., Wei, X., Experiment on NOx reduction by advanced reburning in cement precalciner (2018) Fuel, 224, pp. 235-240; Li, X., Dong, Z., Dou, J., Yu, J., Tahmasebi, A., Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment (2016) Fuel Process. Technol., 148, pp. 91-98; Li, Y., Sun, R., Liu, C., Liu, H., Lu, C., CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles (2012) Int. J. Greenh. Gas Control, 9, pp. 117-123; Liang, L., Hui, S., Pan, S., Shang, T., Liu, C., Wang, D., Influence of mixing, oxygen and residence time on the SNCR process (2014) Fuel, 120, pp. 38-45; Liu, S., (2017) Chapter 15 - Sustainability and Stability, pp. 871-947. , S.B.T.-B.E. Liu E. Second Elsevier; Liu, S., Guo, R., Sun, P., Wang, S., Pan, W., Li, M., Liu, S., Liu, J., The enhancement of Zn resistance of Mn/TiO2 catalyst for NH3-SCR reaction by the modification with Al2(SO4)3 (2017) J. Taiwan Inst. Chem. Eng., 78, pp. 370-377; Liu, Y., Adewuyi, Y.G., A review on removal of elemental mercury from flue gas using advanced oxidation process: chemistry and process (2016) Chem. Eng. Res. Des., 112, pp. 199-250; Liu, Y., Liu, Z., Wang, Y., Yin, Y., Pan, J., Zhang, J., Wang, Q., Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system (2018) J. Hazard. Mater., 342, pp. 326-334; Liu, Y., Wang, Q., Yin, Y., Pan, J., Zhang, J., Advanced oxidation removal of NO and SO2 from flue gas by using ultraviolet/H2O2/NaOH process (2014) Chem. Eng. Res. Des., 92, pp. 1907-1914; Liu, Y., Wang, Y., Wang, Q., Pan, J., Zhang, J., Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) (2018) Chemosphere, 190, pp. 431-441; Liu, Y., Wang, Y., Xu, W., Yang, W., Pan, Z., Wang, Q., Simultaneous absorption–oxidation of nitric oxide and sulfur dioxide using ammonium persulfate synergistically activated by UV-light and heat (2018) Chem. Eng. Res. Des., 130, pp. 321-333; Liu, Y., Zhang, J., Pan, J., Tang, A., Investigation on the removal of NO from SO2-containing simulated flue gas by an ultraviolet/fenton-Like reaction (2012) Energy Fuels, 26, pp. 5430-5436; Liu, Y., Zhang, J., Sheng, C., Kinetic model of NO removal from SO2-containing simulated flue gas by wet UV/H2O2 advanced oxidation process (2011) Chem. Eng. J., 168, pp. 183-189; Liu, Y., Zhang, J., Sheng, C., Zhang, Y., Zhao, L., Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process (2010) Chem. Eng. J., 162, pp. 1006-1011; López, D., Calo, J., The NO−Carbon reaction: the influence of potassium and CO on reactivity and populations of oxygen surface complexes (2007) Energy Fuels, 21, pp. 1872-1877; Ma, C., Yi, H., Tang, X., Zhao, S., Yang, K., Song, L., Zhang, Y., Wang, Y., Improving simultaneous removal efficiency of SO2 and NOx from flue gas by surface modification of MgO with organic component (2019) J. Clean. Prod., 230, pp. 508-517; Ma, X., Li, Y., Chi, C., Zhang, W., Shi, J., Duan, L., CO2 capture performance of mesoporous synthetic sorbent fabricated using carbide slag under realistic calcium looping conditions (2017) Energy Fuels, 31, pp. 7299-7308; Mahuli, S.K., Agnihotri, R., Chauk, S., Ghosh-Dastidar, A., Wei, S.H., Fan, L.S., Pore-structure optimization of calcium carbonate for enhanced sulfation (1997) AIChE J., 43, pp. 2323-2335; Maji, K.J., Arora, M., Dikshit, A.K., Premature mortality attributable to PM2.5 exposure and future policy roadmap for ‘airpocalypse’ affected Asian megacities (2018) Process Saf. Environ. Prot., 118, pp. 371-383; Manovic, V., Anthony, E.J., CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture (2009) Environ. Sci. Technol., 43, pp. 7117-7122; Muley, S., Nandgude, T., Poddar, S., Extrusion–spheronization a promising pelletization technique: In-depth review (2016) Asian J. Pharm. Sci., 11, pp. 684-699; Qin, C., Hong, D., Liang, L., Yin, J., Bo, F., CO2 capture performance and attrition property of CaO-based pellets manufactured from organometallic calcium precursors by extrusion (2014) Energy Fuels, 28, pp. 329-339; Qin, C., Yin, J., An, H., Liu, W., Feng, B., Performance of extruded particles from calcium hydroxide and cement for CO2 capture (2012) Energy Fuels, 26, pp. 154-161; Ruggeri, M.P., Luo, J., Nova, I., Tronconi, E., Kamasamudram, K., Yezerets, A., Novel method of ammonium nitrate quantification in SCR catalysts (2018) Catal. Today, 307, pp. 48-54; Scala, F., Attrition during steam gasification of lignite char in a fluidized bed reactor (2016) Fuel Process. Technol., 141, pp. 38-43; Scala, F., Salatino, P., Limestone fragmentation and attrition during fluidized bed oxyfiring (2010) Fuel, 89, pp. 827-832; Scala, F., Salatino, P., Attrition of limestones by impact loading in fluidized beds: the influence of reaction conditions (2010) Fuel Process. Technol., 91, pp. 1022-1027; Shimizu, T., Satoh, M., Sato, K., Tonsho, M., Inagaki, M., Reduction of SO2 and N2O emissions without increasing NOx emission from a fluidized bed combustor by using fine limestone particles (2002) Energy Fuels, 16, pp. 161-165; Shu, Y., Wang, H., Zhu, J., Tian, G., Huang, J., Zhang, F., An experimental study of heterogeneous NO reduction by biomass reburning (2015) Fuel Process. Technol., 132, pp. 111-117; Su, S., Xiang, J., Sun, L., Hu, S., Zhang, Z., Zhu, J., Application of gaseous fuel reburning for controlling nitric oxide emissions in boilers (2009) Fuel Process. Technol., 90, pp. 396-402; Sun, J., Liu, W., Hu, Y., Wu, J., Li, M., Yang, X., Wang, W., Xu, M., Enhanced performance of extruded–spheronized carbide slag pellets for high temperature CO2 capture (2016) Chem. Eng. J., 285, pp. 293-303; Sun, Z., Feng, R., Li, Z., Xie, H., CO2 capture and sequestration by sodium humate and Ca(OH)2 from carbide slag (2018) Res. Chem. Intermed., 44, pp. 3613-3627; Symonds, R.T., Lu, D.Y., Manovic, V., Anthony, E.J., Pilot-scale study of CO2 capture by CaO-Based sorbents in the presence of steam and SO2 (2012) Ind. Eng. Chem. Res., 51, pp. 7177-7184; Ulusoy, B., Wu, H., Lin, W., Karlström, O., Li, S., Song, W., Glarborg, P., Dam-Johansen, K., Reactivity of sewage sludge, RDF, and straw chars towards NO (2019) Fuel, 236, pp. 297-305; Wang, C., Du, Y., Che, D., Investigation on the NO reduction with coal char and high concentration CO during oxy-fuel combustion (2012) Energy Fuels, 26, pp. 7367-7377; Wang, X., Li, Y., Shi, J., Zhao, J., Wang, Z., Liu, H., Zhou, X., Simultaneous SO2/NO removal performance of carbide slag pellets by bagasse templating in a bubbling fluidized bed reactor (2018) Fuel Process. Technol., 180, pp. 75-86; Wu, H., Yang, L., Yan, J., Hong, G., Yang, B., Improving the removal of fine particles by heterogeneous condensation during WFGD processes (2016) Fuel Process. Technol., 145, pp. 116-122; Wu, S., Li, Y., Zhao, J., Lu, C., Wang, Z., Simultaneous CO2/SO2 adsorption performance of carbide slag in adsorption/desorption cycles (2016) Can. J. Chem. Eng., 94, pp. 33-40; Ke, X., Cai, R., Lv, J., Zhang, M., Wu, Y., Yang, H., Zhang, H., Research progress of the effects of Ca-based sorbents on the NOx reaction in circulating fluidized bed boilers (2019) Clean Coal Technology, 25, pp. 4-14; Xu, Y., Ding, H., Luo, C., Zheng, Y., Yang, X., Li, X., Zhang, Z., Zhang, L., Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method (2018) Chem. Eng. J., 334, pp. 2520-2529; Yan, W., Li, S., Fan, C., Deng, S., Effect of surface carbon-oxygen complexes during NO reduction by coal char (2017) Fuel, 204, pp. 40-46; Yang, N., Yu, J., Dou, J., Tahmasebi, A., Song, H., Moghtaderi, B., Lucas, J., Wall, T., The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning (2016) Fuel Process. Technol., 152, pp. 102-107; Yang, Y., Lin, X., Chen, X., Wang, Y., Gao, L., Chen, L., The formation of deposits and their evolutionary characteristics during pressurized gasification of Zhundong coal char (2018) Fuel, 224, pp. 469-480; Yao, C.B., Wang, Y., Dong, L., Bie, R.S., Xu, G.W., Experimental study on dual bed decoupling combustion of distilled spirits lees (2011) The Chinese J. Process Eng., 11, pp. 283-288; Yu, Z., Fan, X., Gan, M., Chen, X., Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering (2017) J. Iron Steel Res. Int., 24, pp. 1184-1189; Yuan, Y., Zhang, J., Li, H., Li, Y., Zhao, Y., Zheng, C., Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis (2012) Chem. Eng. J., 192, pp. 21-28; Zhang, J., Sun, S., Zhao, Y., Hu, X., Xu, G., Qin, Y., Effects of inherent metals on NO reduction by coal char (2011) Energy Fuels, 25, pp. 5605-5610; Zhao, K., Glarborg, P., Jensen, A.D., NO reduction over biomass and coal char during simultaneous combustion (2013) Energy Fuels, 27, pp. 7817-7826; Zhao, Z., Li, W., Li, B., Catalytic reduction of NO by coal chars loaded with Ca and Fe in various atmospheres (2002) Fuel, 81, pp. 1559-1564; Zhao, Z., Qiu, J., Li, W., Chen, H., Li, B., Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion (2003) Fuel, 82, pp. 949-957; Zoubari, G., Ali, R., Dashevskiy, A., Water-soluble and -insoluble polymers as binders for pellet preparation by extrusion/spheronization (2019) J. Drug Deliv. Sci. Technol., 49, pp. 1-5 [format_title_en_publication_en_pub_year] => c2814dbb5ca6856614295f30a9802679-26724555 [abstract_en] => In this work, a simultaneous SO2/NO removal method using pellets made of carbide slag and coal char by extrusion-spheronization process was proposed. The effects of char type, reaction temperature, O-2 concentration, initial NO/SO2 concentration and the addition of supporters on the simultaneous SO2/NO removal performance of the pellets made of carbide slag and coal char were investigated in a bubbling fluidized-bed reactor. CaO derived from carbide slag not only acts as an excellent desulfurizer but also catalyzes the reduction of NO by coal char. The results show that the pellets made of carbide slag and coal char possess better simultaneous SO2/NO removal performance than the pellets made of carbide slag and bio-char. The optimal reaction temperature range for SO2/NO removal by the pellets made of carbide slag and coal char is 850-875 degrees C. The addition of the supporters such as Al2O3 and high alumina cement enhances the mechanical strength of the pellets. The pellets made of carbide slag and coal char seems promising for efficient simultaneous SO2/NO removal in the circulating fluidized bed decoupling combustion. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. [scopus_id] => 57203460881;7502099047;57077214100;25227000800;57208586765; [from_id] => 76,73 [cauthor_ad] => [Li, YJ]Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China. [hx_id] => 2378,2371 [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [title_en] => Simultaneous SO2 and NO removal by pellets made of carbide slag and coal char in a bubbling fluidized-bed reactor [index_keyword] => Alumina; Aluminum oxide; Bubble formation; Calcium carbide; Chemical reactors; Coal; Fluidization; Fluidized bed combustion; Fluidized bed furnaces; Fluidized bed process; Fluidized beds; Ore pellets; Pelletizing; Slags; Supersaturation; Bubbling fluidized bed reactor; Carbide slag; Circulating fluidized bed; Coal chars; Decoupling combustions; Extrusion-spheronization; High alumina cements; Optimal reaction temperature; Coal combustion [volume] => 134 [source_type] => 351 [pub_year] => 2020 [keyword_en] => Carbide slag; Coal char; Pellets; Fluidization; Simultaneous SO2/NO; removal [article_id] => 814744,813794 [begin_page] => 83 [hints] => 0 [publisher] => ELSEVIER [doi] => 10.1016/j.psep.2019.11.022 [language] => English [issn] => 0957-5820 [batch] => 3422,3424 [publication_en] => PROCESS SAFETY AND ENVIRONMENTAL PROTECTION [email] => liyj@sdu.edu.cn [sys_update_time] => 2020-03-13 09:56:31 [format_title_en_issn_pub_year] => 67de6e0eaea77198dad1d5601713758a-662159756 [publication_iso] => Process Saf. Environ. Protect. [SYS_TAG] => 3 [end_page] => 94 [page] => 83-94 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [cite_wos] => 0 [check_3Y] => 5 [delivery_No] => KH2ND [format_title] => [author_fn] => Wang, Xin; Li, Yingjie; Zhang, Wan; Zhao, Jianli; Wang, Zeyan [pages] => 12 [publication_29] => PROCESS SAF ENVIRON [eissn] => 1744-3598 [publication_type] => J [get_data] => 2020-03-06 [format_publication_cn] => [keyword_plu] => CAO-BASED PELLETS; ADVANCED OXIDATION PROCESS; FLUE-GAS; NITRIC-OXIDE; CO2 CAPTURE; HETEROGENEOUS CONDENSATION; SIMULTANEOUS ABSORPTION; CATALYTIC-REDUCTION; SULFUR-DIOXIDE; LIGNITE CHAR [fund_ab] => Financial supports from the National Natural Science Foundation of China; (51876105), the Fundamental Research Funds of Shandong University; (2018JC039) and the Joint Foundation of National Natural Science; Foundation of China and Shanxi Province for coal-based low carbon; (U1510130) are gratefully appreciated. [format_title_en] => c661720c9fdaee41133ad885fe8e24fc703407150 [publisher_city] => AMSTERDAM [pub_date] => FEB [cauthor_order] => 2 [reference_No] => 78 [cite_awos] => 0 [wos_No] => WOS:000510483400005 [sys_priority_field] => 73 [format_wos_No] => ca46776da4a623a3ad27d832c60f9cba-1107289618 [wos_sub] => Engineering, Environmental; Engineering, Chemical [research_area] => Engineering [cauthor_back] => Li, YJ [check_180] => 5 [publisher_ad] => RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS [format_publication_en] => 2b2ae2748fd522868459adb7a323963f-1223461755 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => processsafetyandenvironmentalprotection [jl_country] => 中国 [jl_keyword_en] => coalchar,fluidization,removal,carbideslag,simultaneousso2no,pellets [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => elsevier [company_id] => 146,0,151 [author_id] => 24402,21995,24279,24281,25863,24283,24282,24285,24284 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 李英杰 [irtag] => 7 [t_index] => 2 [person_id] => 21995 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 王心 [irtag] => 7 [t_index] => 0 [person_id] => 24279 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 王欣 [irtag] => 7 [t_index] => 0 [person_id] => 24281 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 王欣 [irtag] => 7 [t_index] => 0 [person_id] => 24282 ) [4] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 王欣 [irtag] => 7 [t_index] => 0 [person_id] => 24283 ) [5] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 王新 [irtag] => 7 [t_index] => 0 [person_id] => 24284 ) [6] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 王新 [irtag] => 7 [t_index] => 0 [person_id] => 24285 ) [7] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 王泽岩 [irtag] => 7 [t_index] => 0 [person_id] => 24402 ) [8] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 赵建立 [irtag] => 7 [t_index] => 0 [person_id] => 25863 ) ) [sys_subject_sort] => 0,0 [college_parent_id] => 146,151 [company_test] => Array,Array [id] => xwA103ABe-eYmRwwIxqf [tags] => 0 ) [18] => Array ( [standard_in] => Key Laboratory of Colloid and Interface Chemistryof State Education Ministry, Shandong University, Jinan, 250100, China [cauthor] => Li, Ying(yingli@sdu.edu.cn) [school_id] => 117 [scopus_No] => 2-s2.0-85078509446 [author_in] => [Wang, Qiaozhi; Xue, Chunlong; Zhao, Hui; Qin, Yan; Zhang, Xiaohan; Li, Ying] Shandong Univ, Key Lab Colloid & Interface Chem, State Educ Minist, Jinan 250100, Peoples R China. [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078509446&doi=10.1016%2fj.colsurfa.2020.124471&partnerID=40&md5=8d1930429ed1a6f8889f7390b6e3fa71 [tag] => 0 [author_en] => Wang, QZ; Xue, CL; Zhao, H; Qin, Y; Zhang, XH; Li, Y [format_scopus_No] => 36db25aef8282144724fc0f4e2673edc1601293166 [format_doi] => 34ad1a876bc2db6034d0b8287094145e-1064679244 [sys_update_time] => 2020-03-13 09:56:31 [fund_No] => National Science Fund of ChinaNational Natural Science Foundation of; China [21872084, 61575109, 21473103]; Key Research and Development; Project of Shandong Province [2018GSF117025] [reference] => Zhang, C., Wang, Z., Wang, C., Li, X., Liu, J., Xu, M., Xu, S., Cao, Z., Highly uniform perfluoropropane-loaded cerasomal microbubbles as a novel ultrasound contrast agent (2016) ACS Appl. Mater. Interfaces, 8, pp. 15024-15032; Song, R., Peng, C., Xu, X., Wang, J., Yu, M., Hou, Y., Zou, R., Yao, S., Controllable formation of monodisperse polymer microbubbles as ultrasound contrast agents (2018) ACS Appl. Mater. Interfaces, 10, pp. 14312-14320; Nakatsuka, M.A., Hsu, M.J., Esener, S.C., Cha, J.N., Goodwin, A.P., DNA-coated microbubbles with biochemically tunable ultrasound contrast activity (2011) Adv. Mater., 23, pp. 4908-4912; Unger, E., Porter, T., Lindner, J., Grayburn, P., Cardiovascular drug delivery with ultrasound and microbubbles (2014) Adv. Drug Deliv. Rev., 72, pp. 110-126; Horsley, H., Owen, J., Browning, R., Carugo, D., Malone-Lee, J., Stride, E., Rohn, J.L., Ultrasound-activated microbubbles as a novel intracellular drug delivery system for urinary tract infection (2019) J. Control. Release, 301, pp. 166-175; Du, J., Zhao, X., Li, B., Mou, Y., Wang, Y., DNA-loaded microbubbles with crosslinked bovine serum albumin shells for ultrasound-promoted gene delivery and transfection (2018) Colloids Surf. B Biointerfaces, 161, pp. 279-287; Swanson, E.J., Mohan, V., Kheir, J., Borden, M.A., Phospholipid-stabilized microbubble foam for injectable oxygen delivery (2010) Langmuir, 26, pp. 15726-15729; Oeffinger, B.E., Vaidya, P., Ayaz, I., Shraim, R., Eisenbrey, J.R., Wheatley, M.A., Preserving the integrity of surfactant-stabilized microbubble membranes for localized oxygen delivery (2019) Langmuir; Kwan, J.J., Kaya, M., Borden, M.A., Dayton, P.A., Theranostic oxygen delivery using ultrasound and microbubbles (2012) Theranostics, 2, pp. 1174-1184; Zheng, T., Zhang, T., Wang, Q., Tian, Y., Shi, Z., Smale, N., Xu, B., Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process (2015) RSC Adv., 5, pp. 77601-77609; Temesgen, T., Bui, T.T., Han, M., Kim, T.I., Park, H., Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review (2017) Adv. Colloid Interface Sci., 246, pp. 40-51; Justeau, C., Vela-Gonzalez, A.V., Jourdan, A., Riess, J.G., Krafft, M.P., Adsorption of cerium salts and cerium oxide nanoparticles on microbubbles can Be induced by a fluorocarbon gas (2018) ACS Sustain. Chem. Eng., 6, pp. 11450-11456; Xia, Y., Wang, L., Zhang, R., Yang, Z., Xing, Y., Gui, X., Cao, Y., Sun, W., Enhancement of flotation response of fine low-rank coal using positively charged microbubbles (2019) Fuel, 245, pp. 505-513; Parmar, R., Majumder, S.K., Mineral beneficiation by ionic microbubble in continuous plant prototype: efficiency and its analysis by kinetic model (2016) Chem. Eng. Sci., 142, pp. 42-54; Soli, K.W., Yoshizumi, A., Motomatsu, A., Yamakawa, M., Yamasaki, M., Mishima, T., Miyaji, N., Miyamoto, T., Decontamination of fresh produce by the use of slightly acidic hypochlorous water following pretreatment with sucrose fatty acid ester under microbubble generation (2010) Food Control, 21, pp. 1240-1244; Rovers, T.A.M., Sala, G., van der Linden, E., Meinders, M.B.J., Temperature is key to yield and stability of BSA stabilized microbubbles (2016) Food Hydrocoll., 52, pp. 106-115; Rovers, T.A., Sala, G., van der Linden, E., Meinders, M.B., Effect of temperature and pressure on the stability of protein microbubbles (2016) ACS Appl. Mater. Interfaces, 8, pp. 333-340; Rovers, T.A., Sala, G., van der Linden, E., Meinders, M.B., Disintegration of protein microbubbles in presence of acid and surfactants: a multi-step process (2015) Soft Matter, 11, pp. 6403-6411; Son, I., Lee, B., Kim, J.H., Kim, C., Yoo, J.Y., Ahn, B.W., Hwang, J., Lee, J.H., Microbubble-triggered spontaneous separation of transparent thin films from substrates using evaporable core-shell nanocapsules (2018) ACS Appl. Mater. Interfaces, 10, pp. 17375-17382; Lee, M., Lee, E.Y., Lee, D., Park, B.J., Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials (2015) Soft Matter, 11, pp. 2067-2079; Mahalingam, S., Meinders, M.B., Edirisinghe, M., Formation, stability, and mechanical properties of bovine serum albumin stabilized air bubbles produced using coaxial electrohydrodynamic atomization (2014) Langmuir, 30, pp. 6694-6703; Ekemen, Z., Chang, H., Ahmad, Z., Bayram, C., Rong, Z., Denkbas, E.B., Stride, E., Edirisinghe, M., Fabrication of biomaterials via controlled protein bubble generation and manipulation (2011) Biomacromolecules, 12, pp. 4291-4300; Segers, T., Lassus, A., Bussat, P., Gaud, E., Frinking, P., Improved coalescence stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at elevated temperatures (2018) Lab Chip, 19, pp. 158-167; Salari, A., Gnyawali, V., Griffiths, I.M., Karshafian, R., Kolios, M.C., Tsai, S.S.H., Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes (2017) Soft Matter, 13, pp. 8796-8806; Mohamedi, G., Azmin, M., Pastoriza-Santos, I., Huang, V., Perez-Juste, J., Liz-Marzan, L.M., Edirisinghe, M., Stride, E., Effects of gold nanoparticles on the stability of microbubbles (2012) Langmuir, 28, pp. 13808-13815; Elsayed, M., Kothandaraman, A., Edirisinghe, M., Huang, J., Porous polymeric films from microbubbles generated using a T-junction microfluidic device (2016) Langmuir, 32, pp. 13377-13385; Upadhyay, A., Dalvi, S.V., Gupta, G., Khanna, N., Effect of PEGylation on performance of protein microbubbles and its comparison with lipid microbubbles (2017) Mater. Sci. Eng. C Mater. Biol. Appl., 71, pp. 425-430; Cavalieri, F., Best, J.P., Perez, C., Tu, J., Caruso, F., Matula, T.J., Ashokkumar, M., Mechanical characterization of ultrasonically synthesized microbubble shells by flow cytometry and AFM (2013) ACS Appl. Mater. Interfaces, 5, pp. 10920-10925; Cavalieri, F., Ashokkumar, M., Grieser, F., Caruso, F., Ultrasonic synthesis of stable, functional lysozyme microbubbles (2008) Langmuir, 24, pp. 10078-10083; Callens, M., Beltrami, M., D\'Agostino, E., Pfeiffer, H., Verellen, D., Paradossi, G., Van Den Abeele, K., The photopolymerization of DC8,9PC in microbubbles (2019) Colloids Surf. A Physicochem. Eng. Asp., 568, pp. 371-380; Capece, S., Chiessi, E., Cavalli, R., Giustetto, P., Grishenkov, D., Paradossi, G., A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices (2013) Chem. Commun., 49, pp. 5763-5765; Xu, Q., Nakajima, M., Liu, Z., Shiina, T., Biosurfactants for microbubble preparation and application (2011) Int. J. Mol. Sci., 12, pp. 462-475; Mahalingam, S., Raimi-Abraham, B.T., Craig, D.Q., Edirisinghe, M., Formation of protein and protein-gold nanoparticle stabilized microbubbles by pressurized gyration (2015) Langmuir, 31, pp. 659-666; Ma, X., Bussonniere, A., Liu, Q., A facile sonochemical synthesis of shell-stabilized reactive microbubbles using surface-thiolated bovine serum albumin with the Traut\'s reagent (2017) Ultrason. Sonochem., 36, pp. 454-465; Upadhyay, A., Dalvi, S.V., Synthesis, characterization and stability of BSA-encapsulated microbubbles (2016) RSC Adv., 6, pp. 15016-15026; Lafond, M., Watanabe, A., Yoshizawa, S., Umemura, S.I., Tachibana, K., Cavitation-threshold determination and rheological-parameters estimation of albumin-stabilized nanobubbles (2018) Sci. Rep., 8, p. 7472; Eisenbrey, J.R., Albala, L., Kramer, M.R., Daroshefski, N., Brown, D., Liu, J.B., Stanczak, M., Wheatley, M.A., Development of an ultrasound sensitive oxygen carrier for oxygen delivery to hypoxic tissue (2015) Int. J. Pharm., 478, pp. 361-367; Fix, S.M., Papadopoulou, V., Velds, H., Kasoji, S.K., Rivera, J.N., Borden, M.A., Chang, S., Dayton, P.A., Oxygen microbubbles improve radiotherapy tumor control in a rat fibrosarcoma model - a preliminary study (2018) PLoS One, 13; Song, R., Hu, D., Chung, H.Y., Sheng, Z., Yao, S., Lipid-polymer bilaminar oxygen nanobubbles for enhanced photodynamic therapy of Cancer (2018) ACS Appl. Mater. Interfaces, 10, pp. 36805-36813; Miyamoto, N., Hiramatsu, K., Tsuchiya, K., Sato, Y., Carbon dioxide microbubbles-enhanced sonographically guided radiofrequency ablation: treatment of patients with local progression of hepatocellular carcinoma (2008) Radiat. Med., 26, pp. 92-97; Sleytr, U.B., Györvary, E., Pum, D., Crystallization of S-layer protein lattices on surfaces and interfaces (2003) Prog. Org. Coat., 47, pp. 279-287; Silver, B.R., Fülöp, V., Unwin, P.R., Protein crystallization at oil/water interfaces (2011) New J. Chem., 35, p. 602; Gao, A., Wu, Q., Wang, D., Ha, Y., Chen, Z., Yang, P., A superhydrophobic surface templated by protein self-assembly and emerging application toward protein crystallization (2016) Adv. Mater., 28, pp. 579-587; Azadani, A.N., Lopez, J.M., Hirsa, A.H., Protein crystallization at the air/water interface induced by shearing bulk flow (2007) Langmuir, 23, pp. 5227-5230; Wu, C., Nesset, K., Masliyah, J., Xu, Z., Generation and characterization of submicron size bubbles (2012) Adv. Colloid Interface Sci., 179-182, pp. 123-132; Jose, J.K., Mmbaga, J.P., Hayes, R.E., Xu, Z., Modelling of cavitation in a high‐intensity agitation cell (2011) Can. J. Chem. Eng., 89, pp. 1154-1164; Parthasarathy, R., Ahmed, N., Bubble size distribution in a gas sparged vessel agitated by a Rushton turbine (1994) Ind. Eng. Chem. Res., 33, pp. 703-711; Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., Shiina, T., A comparative study of microbubble generation by mechanical agitation and sonication (2008) Innov. Food Sci. Emerg. Technol., 9, pp. 489-494; Shih, R., Lee, A.P., Post-formation shrinkage and stabilization of microfluidic bubbles in lipid solution (2016) Langmuir, 32, pp. 1939-1946; Borrelli, M.J., O\'Brien, W.D., Jr, Bernock, L.J., Williams, H.R., Hamilton, E., Wu, J., Oelze, M.L., Culp, W.C., Production of uniformly sized serum albumin and dextrose microbubbles (2012) Ultrason. Sonochem., 19, pp. 198-208; Sridhar, S., Patel, A., Dalvi, S.V., Estimation of storage stability of aqueous microbubble suspensions (2016) Colloids Surf. A Physicochem. Eng. Asp., 489, pp. 182-190; Anand, U., Kurup, L., Mukherjee, S., Deciphering the role of pH in the binding of ciprofloxacin hydrochloride to bovine serum albumin (2012) Phys. Chem. Chem. Phys., 14, pp. 4250-4258; Cascão Pereira, L.G., Theodoly, O., Blanch, H.W., Radke, C.J., Dilatational rheology of BSA conformers at the air/water interface (2003) Langmuir, 19, pp. 2349-2356; Sah, H., Stabilization of proteins against methylene chloride/water interface-induced denaturation and aggregation (1999) J. Control. Release, 58, pp. 143-151; Rudiuk, S., Cohen-Tannoudji, L., Huille, S., Tribet, C., Importance of the dynamics of adsorption and of a transient interfacial stress on the formation of aggregates of IgG antibodies (2012) Soft Matter, 8, p. 2651; Amin, S., Barnett, G.V., Pathak, J.A., Roberts, C.J., Sarangapani, P.S., Protein aggregation, particle formation, characterization & rheology (2014) Curr. Opin. Colloid Interface Sci., 19, pp. 438-449; Duerkop, M., Berger, E., Durauer, A., Jungbauer, A., Impact of cavitation, high shear stress and Air/Liquid interfaces on protein aggregation (2018) Biotechnol. J., 13; Blankenburg, R., Meller, P., Ringsdorf, H., Salesse, C., Interaction between biotin lipids and streptavidin in monolayers: formation of oriented two-dimensional protein domains induced by surface recognition (1989) Biochemistry, 28, pp. 8214-8221; Darst, S.A., Ahlers, M., Meller, P., Kubalek, E., Blankenburg, R., Ribi, H., Ringsdorf, H., Kornberg, R., Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules (1991) Biophys. J., 59, pp. 387-396 [format_title_en_publication_en_pub_year] => 1425b007bda34a376a240a1200557f7f1713901108 [abstract_en] => Recently, microbubbles with diameters ranging from a few to tens of microns have an increasing attractive attention in various applications. For microbubbles, exploring convenient and reliable fabrication approach is crucial, in particular achieving stable microbubbles filled with diverse gas. In this work, the baffled high intensity agitation (BHIA) cell was utilized to generate bovine serum albumin (BSA)-coated microbubbles. The characteristics of generated air-filled microbubbles was explored by adjustment of operating parameters. It was found that the microbubble size mainly depends on employed agitation speed. Microbubbles filled with different gas, such as N-2, O-2, and CO2, also were successfully obtained and show good stability at room temperature due to the formation of thick and elastic BSA shell. It was interestingly observed that a large number of regular BSA particles scattered around the trajectory of microbubble interfaces by scanning electron microscopy, which was obviously different from the particles formed from BSA solution in absence of microbubbles. The mechanism behind the phenomenon was investigated, and it was found that the abundant gas-liquid interface introduced by microbubbles is responsible for triggering the oriented aggregation of BSA molecules. The founding may reveal a spur significant for the effect of gas-liquid interface on the formation of protein crystals. [scopus_id] => 57201920875;57214237491;57188974545;57214768352;57203619680;55682592000; [from_id] => 76,74,73 [cauthor_ad] => [Li, Y]Shandong Univ, Sch Chem & Chem Engn, 27 South Rd ShanDa, Jinan 250100, Shandong, Peoples R China. [hx_id] => 2376,2378,2371 [classification_pub] => CPEAE [doi] => 10.1016/j.colsurfa.2020.124471 [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [title_en] => The fabrication of protein microbubbles with diverse gas core and the novel exploration on the role of interface introduction in protein crystallization [index_keyword] => Fabrication; Gases; Liquids; Mammals; Petroleum prospecting; Proteins; Scanning electron microscopy; Surface plasmon resonance; Agitation speed; Bovine serum albumins; Gas-liquid interface; Microbubbles; Operating parameters; Oriented aggregation; Protein crystal; Protein crystallization; Phase interfaces; baffled high intensity agitation cell; bovine serum albumin; carbon dioxide; nitrogen; oxygen; stabilizing agent; unclassified drug; air; Article; crystal; crystallization; elasticity; gas; liquid; microbubble; molecular stability; particle size; priority journal; reaction duration (chemistry); room temperature; scanning electron microscopy; synthesis; thickness; velocity; zeta potential [volume] => 589 [source_type] => 351 [pub_year] => 2020 [keyword_en] => Microbubbles; Fabrication; Bovine serum albumin; Gas-liquid interface;; Protein crystallization [article_id] => 815013,810386,808383 [hints] => 1 [publisher] => ELSEVIER [substance] => carbon dioxide, 124-38-9, 58561-67-4; nitrogen, 7727-37-9; oxygen, 7782-44-7 [language] => English [issn] => 0927-7757 [batch] => 3422,3418,3424 [publication_en] => COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS [email] => yingli@sdu.edu.cn [document_No] => 124471 [format_title_en_issn_pub_year] => a9fffdf65c0fb9947e1ffe20e65a3d7a1098885312 [publication_iso] => Colloid Surf. A-Physicochem. Eng. Asp. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [format_title] => [author_fn] => Wang, Qiaozhi; Xue, Chunlong; Zhao, Hui; Qin, Yan; Zhang, Xiaohan; Li, Ying [ei_No] => 20200408070349 [eissn] => 1873-4359 [main_eword] => Phase interfaces [format_publication_cn] => [format_title_en] => 3e7cede959699d517bf1f235eda6692c-294742227 [pub_date] => FEB 20 [classification_No] => 512.1.2 Petroleum Deposits : Development Operations - 801.4 Physical Chemistry - 804.1 Organic Compounds [cauthor_order] => 6,6 [uncontrolled_terms] => Agitation speed - Bovine serum albumins - Gas-liquid interface - Microbubbles - Operating parameters - Oriented aggregation - Protein crystal - Protein crystallization [controlled_terms] => Fabrication - Gases - Liquids - Mammals - Petroleum prospecting - Proteins - Scanning electron microscopy - Surface plasmon resonance [reference_No] => 59 [format_ei_No] => f510065798bca1a7e0482687e8c513e91816127348 [sys_priority_field] => 73 [cauthor_back] => Li, Ying@@@Li, Y [format_publication_en] => 28a0e71ae3db4fb412c9ff916b8bfd3e618103075 [cite_wos] => 0 [check_3Y] => 0 [delivery_No] => KM1EW [pages] => 10 [publication_29] => COLLOID SURFACE A [publication_type] => J [get_data] => 2020-03-06 [keyword_plu] => BOVINE SERUM-ALBUMIN; OXYGEN DELIVERY; ULTRASOUND; STABILITY; STABILIZATION; GENERATION; WATER; NANOPARTICLES; STREPTAVIDIN; TEMPERATURE [fund_ab] => This work was financially supported by the National Science Fund of; China (Nos. 21872084, 61575109, 21473103) and the Key Research and; Development Project of Shandong Province (No. 2018GSF117025). [publisher_city] => AMSTERDAM [cite_awos] => 0 [wos_No] => WOS:000513861400063 [format_wos_No] => e85c193141b20466c10a07753173e0b6-1909501871 [wos_sub] => Chemistry, Physical [research_area] => Chemistry [check_180] => 0 [publisher_ad] => RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => colloidsandsurfacesaphysicochemicalandengineeringaspects [jl_country] => 中国 [jl_keyword_en] => ,bovineserumalbumin,microbubbles,gasliquidinterface,proteincrystallization,fabrication [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => elsevier [company_id] => 0,169 [author_id] => 21993,21994,21998,21999,25859,22000,22003,22002,22005,22004 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李英 [irtag] => 7 [t_index] => 6 [person_id] => 21993 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李盈 [irtag] => 7 [t_index] => 6 [person_id] => 21998 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李莹 [irtag] => 7 [t_index] => 6 [person_id] => 21999 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李莹 [irtag] => 7 [t_index] => 6 [person_id] => 22000 ) [4] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李颖 [irtag] => 7 [t_index] => 6 [person_id] => 22002 ) [5] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李颖 [irtag] => 7 [t_index] => 6 [person_id] => 22004 ) [6] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李颖 [irtag] => 7 [t_index] => 6 [person_id] => 22003 ) [7] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李颖 [irtag] => 7 [t_index] => 6 [person_id] => 22005 ) [8] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 6 [name] => 李英 [irtag] => 7 [t_index] => 6 [person_id] => 21994 ) [9] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 3 [name] => 赵辉 [irtag] => 7 [t_index] => 0 [person_id] => 25859 ) ) [sys_subject_sort] => 0 [college_parent_id] => 169 [company_test] => Array [id] => 1AA103ABe-eYmRwwJhsm [tags] => 0 ) [19] => Array ( [standard_in] => School of Electrical Engineering, Shandong University, Jinan, Shandong Province 250000, China; Centre for Electric Power and Energy, Department of Electrical Engineering, Technical University of Denmark, Kgs. LyngbyDK 2800, Denmark [cauthor] => Wang, Hongtao(whtwhm@sdu.edu.cn) [school_id] => 117 [scopus_No] => 2-s2.0-85072244694 [author_in] => [Zhao, Jin; Liu, Yao; Wang, Hongtao; Wu, Qiuwei] Shandong Univ, Sch Elect Engn, Jinan 250000, Shandong, Peoples R China.@@@ [Wu, Qiuwei] Tech Univ Denmark, Ctr Elect Power & Energy, Dept Elect Engn, DK-2800 Lyngby, Denmark. [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072244694&doi=10.1016%2fj.ijepes.2019.105517&partnerID=40&md5=7505c5464e29575030c2bd543799c87a [tag] => 0 [author_en] => Zhao, J; Liu, Y; Wang, HT; Wu, QW [format_scopus_No] => a70b997a5116a04eec17d94499c919cf-1177939574 [format_doi] => 74e4fb49ada9290bf418cf25382e6487-885192938 [sys_update_time] => 2020-03-13 09:56:30 [fund_No] => National Key R&D Program of China [2016YFB0900100]; Science and; Technology Foundation of SGCC [SGSDDK00KJJS1800084] [reference] => Qiu, F., Li, P., An integrated approach for power system restoration planning (2017) Proc IEEE, 105 (7), pp. 1234-1252; Bahrman, M., Bjorklund, P.E., The new black-start- system restoration with help from volt-age-sourced converter (2014) IEEE Power Energy Mag, 12 (1), pp. 45-53; http://www.aemo.com.au/-/media/Files/Electricity/NEM/Market Notices and Events/Power System Incident Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf, Black System South Australia, Mar. 2017, [Online]. Available:; (2014), http://www.acer.europa.eu/official_documents/acts_of_the_agency/sd052005/supporting%20document%20to%20acer%20recommendation%2005-2014%20-%20%20energy%20regulation%a%bridge%to%25%conclusions%paper.pdf, ACER report. Energy regulation: a bridge to 2025 [Online]. Available:; (2015), https://www.entsoe.eu/Documents/Publications/Position%20papers%20and%20reports/150303_ENTSO-E_Position_Paper_TSO-DSO_interaction.pdf, ENTSO report. Towards smarter grids: Developing TSO and DSO roles and interactions for the benefit of consumers [Online]. Available:; Kargarian, A., Fu, Y., System of systems based security constrained unit commitment incorporating active distribution grids (2014) IEEE Trans Power Syst, 29 (5), pp. 2489-2498; https://www.ferc.gov/legal/staff-reports/04-27-2012-ferc-nerc-report.pdf, FERC/NERC staff report on the September 8, 2011 Blackout, [Online]. Available:; Sun, W., Liu, C.C., Zhang, L., Optimal start-up strategy for bulk power system restoration (2011) IEEE Trans Power Syst, 26 (3), pp. 1357-1366; Lin, Z., Wen, F., Xue, Y., A restorative self-healing algorithm for transmission systems based on complex network theory (2016) IEEE Trans Smart Grid, 7 (4), pp. 2154-2162; Qin, Z., Hou, Y., Liu, C.C., Liu, S., Sun, W., Coordinating generation and load pickup during load restoration with discrete load increments and reserve constraints (2015) IET Gener Transm Distrib, 9 (15), pp. 2437-2446; Golshani, A., Sun, W., Zhou, Q., Zheng, Q.P., Tong, J., Two-stage adaptive restoration decision support system for a self-healing power grid (2017) IEEE Trans Ind Informat, 13 (6), pp. 2802-2812; Golshani, A., Sun, W., Zhou, Q., Zheng, Q.P., Hou, Y., Incorporating wind energy in power system restoration planning (2019) IEEE Trans Smart Grid, 10 (1), pp. 16-28; Tielens, P., Hertem, D.V., Receding horizon control of wind power to provide frequency regulation (2017) IEEE Trans Power Syst, 32 (4), pp. 2663-2672; Kwon, W.H., Han, S., Receding horizon control (2005), Springer; Zhao, J., Wang, H., Liu, Y., Azizipanah-Abarghooee, R., Terzija, V., Utility-oriented on-line load restoration considering wind power penetration (2019) IEEE Trans Sustain Energy, 10 (2), pp. 706-717; Chen, C., Wang, J., Heo, Y., Kishore, S., MPC-based appliance scheduling for residential building energy management controller (2013) IEEE Trans Smart Grid, 4 (3), pp. 1401-1410; Farzin, H., Firuzabad, M.F., Aghtaie, M.M., Enhancing power system resilience through hierarchical outage management in multi-microgrids (2016) IEEE Trans Smart Grid, 7 (6), pp. 2412-2420; Wang, Z., Wang, J., Chen, B., Begovic, M.M., He, Y., MPC-based voltage/var optimization for distribution circuits with distributed generators and exponential load models (2014) IEEE Trans Smart Grid, 5 (5), pp. 2412-2420; Zhao, Y., Lin, Z., Ding, Y., Liu, Y., Sun, L., Yan, Y., A model predictive control based generator start-up optimization strategy for restoration with microgrids as black-start resources (2018) IEEE Trans Power Syst, PP (99). , pp. 1-1; Zhang, N., Kang, C., Xia, Q., A convex model of risk-based unit commitment for day-ahead market clearing considering wind power uncertainty (2014) IEEE Trans Power Syst, 30 (3), pp. 1582-1592; Feng, C., Cui, M., Hodge, B.-M., Zhang, J., A data-driven multi-model framework with deep feature selection for short term wind forcasting (2017) Appl Energy, 190, pp. 1245-1257; Rockafellar, R.T., Uryasev, S., Optimization of conditional value-at-risk (1999) J Risk, 2, pp. 21-42; Jabr, R.A., Robust self-scheduling under price uncertainty using conditional value-at-risk (2005) IEEE Trans Power Syst, 20 (4), pp. 1852-1858; Rockafellar, R.T., Uryasev, S., Conditional value-at-risk for general loss distributions (2002) J Bank Finance, 26 (7), pp. 1443-1471; Adibi, M.M., Borkoski, J.N., Kafka, R.J., Volkmann, T.L., Frequency response of prime movers during restoration (1999) IEEE Trans Power Syst, 14 (2), pp. 751-756; Yeh, H., Gayme, D.F., Low, S.H., Adaptive VAR control for distribution circuit with photovoltaic generators (2012) IEEE Trans Power Syst, 27 (3), pp. 1656-1663; Coffrin, C., Van Hentenryck, P., A linear-programming approximation of AC power flows (2014) INFORMS J Comput, 26 (4), pp. 718-734; Fabbri, A., Roman, T.G.S., Abbad, J.R., Quezada, V.M., Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market (2005) IEEE Trans Power Syst, 20 (3), pp. 1440-1446 [format_title_en_publication_en_pub_year] => 8788ada3416e599387759645da9d5dc4-40898177 [abstract_en] => This paper proposes a conditional value-at-risk (CVaR) based two-stage model predictive control (MPC) method for efficient dynamic load restoration decision-making in the coupled transmission and distribution (TS-DS) system with renewable energy. The CVaR values are employed to describe uncertainties of the load and source sides. It benefits on-line load restoration with uncertainties by fast uncertainty management and prediction error correction. In order to improve the computation of the multi-step load restoration optimization in the coupled TS-DS system, a two-stage load restoration model is constructed with the first stage relaxed multi-step optimization and the second stage single-step tracing optimization. By solving linear programming (LP), mixed integer linear programming (MILP) and mixed integer quadratic programming (MIQP) problems, the proposed CVaR based two-stage MPC method achieves on-line receding horizon load restoration of the coupled TS-DS system facing with load-source uncertainty. The effectiveness of the proposed method is validated using the IEEE-118 and IEEE-33 test systems, and a real-world coupled TS-DS system. [scopus_id] => 57199498386;57203137656;56383968100;16040971200; [from_id] => 76,74,73 [cauthor_ad] => [Wang, HT]Shandong Univ, Sch Elect Engn, Jinan 250000, Shandong, Peoples R China. [hx_id] => 2376,2378,2371 [classification_pub] => IEPSD [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11,10 [title_en] => Receding horizon load restoration for coupled transmission and distribution system considering load-source uncertainty [index_keyword] => Decision making; Dynamic loads; Electric power transmission; Error correction; Model predictive control; Predictive control systems; Quadratic programming; Restoration; Value engineering; Conditional Value-at-Risk; Mixed integer quadratic programming; Mixed-integer linear programming; Power system restoration; Renewable energies; Transmission and distribution; Transmission and distribution systems; Uncertainty management; Integer programming [volume] => 116 [source_type] => 351 [pub_year] => 2020 [keyword_en] => Model predictive control; Power system restoration; Transmission and; distribution system; Uncertainty management [article_id] => 807771,815108,810550 [hints] => 0 [publisher] => ELSEVIER SCI LTD [doi] => 10.1016/j.ijepes.2019.105517 [language] => English [issn] => 0142-0615 [batch] => 3422,3418,3424 [publication_en] => INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS [email] => whtwhm@sdu.edu.cn [document_No] => UNSP 105517 [format_title_en_issn_pub_year] => 248cea21c92a896986bb55483ed692b6-1779934456 [publication_iso] => Int. J. Electr. Power Energy Syst. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [format_title] => [author_fn] => Zhao, Jin; Liu, Yao; Wang, Hongtao; Wu, Qiuwei [ei_No] => 20193807450116 [main_eword] => Integer programming [format_publication_cn] => [format_title_en] => 7c548eaa7fa3c6a3adb60b3ed996c259-2065458140 [pub_date] => MAR [classification_No] => 408.1 Structural Design, General - 706.1.1 Electric Power Transmission - 731.1 Control Systems - 911.5 Value Engineering - 912.2 Management - 921.5 Optimization Techniques [cauthor_order] => 3,3 [uncontrolled_terms] => Conditional Value-at-Risk - Mixed integer quadratic programming - Mixed-integer linear programming - Power system restoration - Renewable energies - Transmission and distribution - Transmission and distribution systems - Uncertainty management [controlled_terms] => Decision making - Dynamic loads - Electric power transmission - Error correction - Model predictive control - Predictive control systems - Quadratic programming - Restoration - Value engineering [reference_No] => 26 [format_ei_No] => 78c3fe4ddadcc3105396e7fa8466108f-1799741645 [sys_priority_field] => 73 [cauthor_back] => Wang, Hongtao@@@Wang, HT [format_publication_en] => f9eaa380a440db633bc72e0e4efae6ac276973517 [cite_wos] => 0 [check_3Y] => 6 [delivery_No] => JR6KZ [pages] => 14 [publication_29] => INT J ELEC POWER [eissn] => 1879-3517 [orcID] => Wu, Qiuwei/0000-0001-7935-2567 [publication_type] => J [get_data] => 2020-03-06 [keyword_plu] => DISTRIBUTION CIRCUITS; UNIT COMMITMENT; WIND POWER; RISK [fund_ab] => This work was supported by the National Key R&D Program of China; (2016YFB0900100) and the Science and Technology Foundation of SGCC; (Research on Key Sub-station Control Technology for Rapid Recovery of; AC/DC Hybrid Power Grid) (SGSDDK00KJJS1800084). [publisher_city] => OXFORD [cite_awos] => 0 [wos_No] => WOS:000499733200017 [format_wos_No] => 52660bf6b0f2637a26d2a3e3c58efeac651693293 [wos_sub] => Engineering, Electrical & Electronic [research_area] => Engineering [check_180] => 6 [publisher_ad] => THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => internationaljournalofelectricalpowerandenergysystems [jl_country] => 中国 [jl_keyword_en] => transmissionand,modelpredictivecontrol,distributionsystem,uncertaintymanagement,powersystemrestoration [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => elseviersciltd [author_test] => Array ( [0] => Array ( [sure] => 1 [irmagnum] => 0 [u_index] => 0 [name] => 王洪涛 [irtag] => 0 [t_index] => 0 [person_id] => 23914 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 刘峣 [irtag] => 7 [t_index] => 0 [person_id] => 22510 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 赵金 [sys_author_id] => Array ( [0] => 23914 ) [irtag] => 7 [t_index] => 0 [person_id] => 25868 ) ) [company_id] => 0,141 [author_id] => 23914,25868,22510 [sys_subject_sort] => 0 [college_parent_id] => 141 [company_test] => Array [id] => MwA103ABe-eYmRwwJhwm [tags] => 0 ) ) 1-->
1. Finite-Time Average Consensus Based Approach for Distributed Convex Optimization EI SCIE

作者:Ma, Wenlong; Fu, Minyue; Cui, Peng; Zhang, Huanshui; Li, Zhipeng

作者机构:[Ma, Wenlong; Cui, Peng; Zhang, Huanshui; Li, Zhipeng] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China.; [Fu, Minyue] Univ Newcastle, Sch Elect Engn & Comp, Callaghan, NSW 2308, Australia.; [Fu, Minyue] Guangdong Unvers Technol, Sch Automat, Guangzhou, Peoples R China.

来源:ASIAN JOURNAL OF CONTROL,2020,Vol.22,Issue.1,323-333

资源类型:期刊论文

WOS:000509509900027

2. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo SCOPUS SCIE

作者:Cui, Ying-Jie; Ma, Chen-Chen; Zhang, Cheng-Mei; Tang, Long-Qian; Liu, Zhao-Peng

作者机构:[Cui, Ying-Jie; Zhang, Cheng-Mei; Tang, Long-Qian; Liu, Zhao-Peng] Shandong Univ, Sch Pharmaceut Sci, Minist Educ, Dept Med Chem,Key Lab Chem Biol, Jinan 250012, Peoples R China.; [Ma, Chen-Chen] Shandong Univ Tradit Chinese Med, Affiliated Hosp, Cent Lab, Jinan 250012, Peoples R China.

来源:EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY,2020,Vol.187

资源类型:期刊论文

WOS:000510525000037

3. Utilization of wax residue as compatibilizer for asphalt with ground tire rubber/recycled polyethylene blends EI SCOPUS SCIE

作者:Liang, Ming; Sun, Changjun; Yao, Zhanyong; Jiang, Hongguang; Zhang, Jizhe; Ren, Shisong

作者机构:[Liang, Ming; Sun, Changjun; Yao, Zhanyong; Jiang, Hongguang; Zhang, Jizhe] Shandong Univ, Sch Qilu Transportat, Jinan 250002, Shandong, Peoples R China.; [Ren, Shisong] China Univ Petr, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R China.

来源:CONSTRUCTION AND BUILDING MATERIALS,2020,Vol.230

资源类型:期刊论文

WOS:000504367400027

4. Defect Engineering of MoS2 for Room-Temperature Terahertz Photodetection SCOPUS SCIE

作者:Xie, Ying; Liang, Fei; Chi, Shumeng; Wang, Dong; Zhong, Kai; Yu, Haohai; Zhang, Huaijin; Chen, Yanxue; Wang, Jiyang

作者机构:[Xie, Ying; Liang, Fei; Chi, Shumeng; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.; [Xie, Ying; Liang, Fei; Chi, Shumeng; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang] Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China.; [Wang, Dong; Chen, Yanxue] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China.; [Zhong, Kai] Tianjin Univ, Minist Educ, Key Lab Optoelect Informat Technol, Tianjin 300072, Peoples R China.

来源:ACS APPLIED MATERIALS & INTERFACES,2020,Vol.12,Issue.6,7351-7357

资源类型:期刊论文

WOS:000514256400056

5. 17.9 W continuous-wave self-frequency-doubled Nd:GdCOB laser EI SCOPUS SCIE

作者:Du, Jinheng; Wang, Jiyang; Yu, Haohai; Zhang, Huaijin

作者机构:[Du, Jinheng; Wang, Jiyang; Yu, Haohai; Zhang, Huaijin] Shandong Univ, State Key Lab Crystal Mat, 27 Shanda Nanlu, Jinan 250100, Peoples R China.; [Du, Jinheng; Wang, Jiyang; Yu, Haohai; Zhang, Huaijin] Shandong Univ, Inst Crystal Mat, 27 Shanda Nanlu, Jinan 250100, Peoples R China.

来源:OPTICS LETTERS,2020,Vol.45,Issue.2,327-330

资源类型:期刊论文

WOS:000510865100018

6. Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser EI SCOPUS SCIE

作者:Tan, Wei; Ma, Weiguang; Liu, Zhaojun; Yan, Xiaojuan; Qiu, Xiaodong; Zhang, Xingyu

作者机构:[Tan, Wei; Liu, Zhaojun; Zhang, Xingyu] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Shandong, Peoples R China.; [Tan, Wei; Liu, Zhaojun; Zhang, Xingyu] Shandong Univ, Shandong Prov Key Lab Laser Technol & Applicat, Qingdao 266237, Shandong, Peoples R China.; [Ma, Weiguang; Yan, Xiaojuan] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China.; [Ma, Weiguang; Yan, Xiaojuan] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China.; [Qiu, Xiaodong] Xiamen Univ, Dept Phys, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Fujian, Peoples R China.; [Qiu, Xiaodong] Xiamen Univ, Jiujiang Res Inst, Xiamen 361005, Fujian, Peoples R China.

来源:OPTICS COMMUNICATIONS,2020,Vol.458

资源类型:期刊论文

WOS:000502796100034

7. Reactive Molecular Dynamics on the Oxidation of H-Si(100) Surface: Effect of Humidity and Temperature SCOPUS SCIE

作者:Yuan, Shideng; Wang, Xueyu; Zhang, Heng; Yuan, Shiling

作者机构:[Yuan, Shideng; Wang, Xueyu; Zhang, Heng; Yuan, Shiling] Shandong Univ, Key Lab Colloid & Interface Chem, Jinan 250199, Peoples R China.

来源:JOURNAL OF PHYSICAL CHEMISTRY C,2020,Vol.124,Issue.3,1932-1940

资源类型:期刊论文

WOS:000509438600019

8. Redistributed Pulsewidth Modulation of MMC Battery Energy Storage System Under Submodule Fault Condition EI SCOPUS SCIE

作者:Gao, Feng; Gu, Xin; Ma, Zhan; Zhang, Chenghui

作者机构:[Gao, Feng; Gu, Xin; Ma, Zhan] Shandong Univ, Minist Educ, Key Lab Power Syst Intelligent Dispatch & Control, Jinan 250061, Peoples R China.; [Zhang, Chenghui] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China.

来源:IEEE TRANSACTIONS ON POWER ELECTRONICS,2020,Vol.35,Issue.3,2284-2294

WOS被引数:1

资源类型:期刊论文

WOS:000507286000008

9. Androgen Receptor (AR)-TLR4 Crosstalk Mediates Gender Disparities in Hepatocellular Carcinoma Incidence and Progression SCOPUS SCIE

作者:Han, Qiuju; Yang, Dan; Yin, Chunlai; Zhang, Jian

作者机构:[Han, Qiuju; Yang, Dan; Yin, Chunlai; Zhang, Jian] Shandong Univ, Sch Pharmaceut Sci, Inst Immunopharmaceut Sci, Jinan 250012, Shandong, Peoples R China.

来源:JOURNAL OF CANCER,2020,Vol.11,Issue.5,1094-1103

资源类型:期刊论文

WOS:000502829400011

10. MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells EI SCOPUS SCIE

作者:Zhang, Ya-Nan; Li, Bo; Fu, Lin; Li, Qun; Yin, Long-Wei

作者机构:[Zhang, Ya-Nan; Li, Qun] Taishan Univ, Coll Chem & Chem Engn, Tai An 271021, Shandong, Peoples R China.; [Zhang, Ya-Nan; Li, Bo; Fu, Lin; Yin, Long-Wei] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China.

来源:ELECTROCHIMICA ACTA,2020,Vol.330

资源类型:期刊论文

WOS:000501468400062

11. Automatic Segmentation and Measurement on Knee Computerized Tomography Images for Patellar Dislocation Diagnosis SCOPUS SCIE

作者:Sun, Limin; Kong, Qi; Huang, Yan; Yang, Jiushan; Wang, Shaoshan; Zou, Ruiqi; Yin, Yilong; Peng, Jingliang

作者机构:[Sun, Limin; Huang, Yan; Yin, Yilong; Peng, Jingliang] Shandong Univ, Sch Software, Jinan 250101, Shandong, Peoples R China.; [Kong, Qi] State Grid Anhui Elect Power Co, Hefei 230061, Anhui, Peoples R China.; [Yang, Jiushan; Wang, Shaoshan; Zou, Ruiqi] Shandong Univ Tradit Chinese Med, Affiliated Hosp 1, Jinan 250014, Shandong, Peoples R China.

来源:COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE,2020,Vol.2020

资源类型:期刊论文

WOS:000514600200001

12. Personalized image quality assessment with Social-Sensed aesthetic preference EI SCIE

作者:Cui, Chaoran; Yang, Wenya; Shi, Cheng; Wang, Meng; Nie, Xiushan; Yin, Yilong

作者机构:[Cui, Chaoran; Yang, Wenya; Nie, Xiushan] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan 250014, Shandong, Peoples R China.; [Shi, Cheng] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China.; [Wang, Meng] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Anhui, Peoples R China.; [Yin, Yilong] Shandong Univ, Sch Software, Jinan 250101, Shandong, Peoples R China.

来源:INFORMATION SCIENCES,2020,Vol.512,780-794

资源类型:期刊论文

WOS:000504778300050

13. Red-shifted electrochemiluminescence of CdTe nanocrystals via Co2+-Doping and its spectral sensing application in near-infrared region SCOPUS SCIE

作者:Gao, Xuwen; Fu, Kena; Fu, Li; Wang, Huaisheng; Zhang, Bin; Zou, Guizheng

作者机构:[Gao, Xuwen; Fu, Kena; Fu, Li; Zhang, Bin; Zou, Guizheng] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China.; [Wang, Huaisheng] Liaocheng Univ, Dept Chem, Liaocheng 252059, Shandong, Peoples R China.

来源:BIOSENSORS & BIOELECTRONICS,2020,Vol.150

资源类型:期刊论文

WOS:000509635500049

14. Phosphorous-Doped alpha-Si Film Crystallization Using Heat-Assisted Femtosecond Laser Annealing EI SCOPUS SCIE

作者:Zhan, Xuepeng; Su, Yue; Fu, Yao; Chen, Jiezhi; Xu, Huailiang

作者机构:[Zhan, Xuepeng; Chen, Jiezhi] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China.; [Su, Yue; Fu, Yao; Xu, Huailiang] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China.; [Xu, Huailiang] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China.

来源:IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING,2020,Vol.33,Issue.1,116-120

资源类型:期刊论文

WOS:000511419300013

15. Degradation of prosulfocarb by hydroxyl radicals in gas and aqueous phase: Mechanisms, kinetics and toxicity SCOPUS SCIE

作者:Bo, Xiaofei; Sun, Jianfei; Mei, Qiong; Wei, Bo; An, Zexiu; Han, Dandan; Li, Zhiqiang; Xie, Ju; Zhan, Jinhua; He, Maoxia

作者机构:[Bo, Xiaofei; Sun, Jianfei; Mei, Qiong; Wei, Bo; An, Zexiu; He, Maoxia] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China.; [Han, Dandan] Heze Univ, Sch Chem & Chem Engn, Heze 274015, Peoples R China.; [Li, Zhiqiang] Shandong Univ, Ctr Opt Res & Engn CORE, Qingdao 266237, Peoples R China.; [Xie, Ju] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China.; [Zhan, Jinhua] Shandong Univ, Dept Chem, Key Lab Colloid & Interface Chem, Educ Minist, Jinan 250100, Peoples R China.

来源:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY,2020,Vol.191

资源类型:期刊论文

WOS:000514011400029

16. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin EI SCOPUS SCIE

作者:Tian, Hailong; Zhang, Jing; Zhang, Huiyuan; Jiang, Yue; Song, Aixin; Luan, Yuxia

作者机构:[Tian, Hailong; Zhang, Jing; Zhang, Huiyuan; Jiang, Yue; Luan, Yuxia] Shandong Univ, Sch Pharmaceut Sci, Key Lab Chem Biol, Minist Educ, 44 West Wenhua Rd, Jinan 250012, Shandong, Peoples R China.; [Song, Aixin] Shandong Univ, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China.

来源:CHEMICAL ENGINEERING JOURNAL,2020,Vol.382

资源类型:期刊论文

WOS:000503381200159

17. Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study EI SCOPUS SCIE

作者:Zhou, Jie; Zhu, Ledong; Chen, Jinfeng; Wang, Wei; Zhang, Ruiming; Li, Yanwei; Zhang, Qingzhu; Wang, Wenxing

作者机构:[Zhou, Jie; Zhu, Ledong; Chen, Jinfeng; Wang, Wei; Zhang, Ruiming; Li, Yanwei; Zhang, Qingzhu; Wang, Wenxing] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China.

来源:SCIENCE OF THE TOTAL ENVIRONMENT,2020,Vol.709

资源类型:期刊论文

WOS:000512281700029

18. Simultaneous SO2 and NO removal by pellets made of carbide slag and coal char in a bubbling fluidized-bed reactor SCOPUS SCIE

作者:Wang, Xin; Li, Yingjie; Zhang, Wan; Zhao, Jianli; Wang, Zeyan

作者机构:[Wang, Xin; Li, Yingjie; Zhang, Wan; Zhao, Jianli] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China.; [Wang, Zeyan] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.

来源:PROCESS SAFETY AND ENVIRONMENTAL PROTECTION,2020,Vol.134,83-94

资源类型:期刊论文

WOS:000510483400005

19. The fabrication of protein microbubbles with diverse gas core and the novel exploration on the role of interface introduction in protein crystallization EI SCOPUS SCIE

作者:Wang, Qiaozhi; Xue, Chunlong; Zhao, Hui; Qin, Yan; Zhang, Xiaohan; Li, Ying

作者机构:[Wang, Qiaozhi; Xue, Chunlong; Zhao, Hui; Qin, Yan; Zhang, Xiaohan; Li, Ying] Shandong Univ, Key Lab Colloid & Interface Chem, State Educ Minist, Jinan 250100, Peoples R China.

来源:COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS,2020,Vol.589

资源类型:期刊论文

WOS:000513861400063

20. Receding horizon load restoration for coupled transmission and distribution system considering load-source uncertainty EI SCOPUS SCIE

作者:Zhao, Jin; Liu, Yao; Wang, Hongtao; Wu, Qiuwei

作者机构:[Zhao, Jin; Liu, Yao; Wang, Hongtao; Wu, Qiuwei] Shandong Univ, Sch Elect Engn, Jinan 250000, Shandong, Peoples R China.; [Wu, Qiuwei] Tech Univ Denmark, Ctr Elect Power & Energy, Dept Elect Engn, DK-2800 Lyngby, Denmark.

来源:INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS,2020,Vol.116

资源类型:期刊论文

WOS:000499733200017

共 3,291 页, 65,804 条记录

TOP