按条件检索“56,879”条记录

已选条件: 数据来源: WOS × 文献类型: 期刊论文 ×
导出
  • 排序
  • 显示
IL12A signal enhances efficacy of sorafenib plus NK cells immunotherapy to better suppress HCC progression (2016) Mol Cancer Ther, 15, pp. 731-742; Miura, K., Ishioka, M., Minami, S., Horie, Y., Ohshima, S., Goto, T., Toll-like receptor 4 on macrophage promotes the development of steatohepatitis-related hepatocellular carcinoma in mice (2016) J Biol Chem, 291, pp. 11504-11517; Miura, K., Ohnishi, H., Role of gut microbiota and toll-like receptors in nonalcoholic fatty liver disease (2014) World J Gastroenterol, 20, pp. 7381-7391; Dapito, D.H., Mencin, A., Gwak, G.Y., Pradere, J.P., Jang, M.K., Mederacke, I., Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4 (2012) Cancer Cell, 21, pp. 504-516; Li, W., Xiao, J., Zhou, X., Xu, M., Hu, C., Xu, X., STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma (2015) J Clin Invest, 125, pp. 4239-4254; Uthaya Kumar, D.B., Chen, C.L., Liu, J.C., Feldman, D.E., Sher, L.S., French, S., TLR4 signaling via NAnoG cooperates with STAT3 to activate twist1 and promote formation of tumor-initiating stem-like cells in livers of mice (2016) Gastroenterology, 150, pp. 707-719; Sepehri, Z., Kiani, Z., Kohan, F., Alavian, S.M., Ghavami, S., Toll like receptor 4 and hepatocellular carcinoma; a systematic review (2017) Life Sci, 179, pp. 80-87; Lin, A., Wang, G., Zhao, H., Zhang, Y., Han, Q., Zhang, C., TLR4 signaling promotes a COX-2/PGE2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells (2016) Oncoimmunology, 5, p. e1074376; Shi, G., Wang, C., Zhang, P., Ji, L., Xu, S., Tan, X., Donor polymorphisms of toll-like receptor 4 rs1927914 associated with the risk of hepatocellular carcinoma recurrence following liver transplantation (2017) Arch Med Res, 48, pp. 553-560; Xu, D., Han, Q., Hou, Z., Zhang, C., Zhang, J., MiR-146a negatively regulates NK cell functions via STAT1 signaling (2017) Cell Mol Immunol, 14, pp. 712-720; Lan, P., Zhang, C., Han, Q., Zhang, J., Tian, Z., Therapeutic recovery of hepatitis b virus (HBV)-induced hepatocyte-intrinsic immune defect reverses systemic adaptive immune tolerance (2013) Hepatology, 58, pp. 73-85; Shalini, S., Nikolic, A., Wilson, C.H., Puccini, J., Sladojevic, N., Finnie, J., Caspase-2 deficiency accelerates chemically induced liver cancer in mice (2016) Cell Death Differ, 23, pp. 1727-1736; Wang, Y., Cai, J., Zeng, X., Chen, Y., Yan, W., Ouyang, Y., Downregulation of toll-like receptor 4 induces suppressive effects on hepatitis b virus-related hepatocellular carcinoma via ERK1/2 signaling (2015) BMC Cancer, 15, p. 821; Hartwell, H.J., Petrosky, K.Y., Fox, J.G., Horseman, N.D., Rogers, A.B., Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-myc in mice (2014) Proc Natl Acad Sci U S A, 111, pp. 11455-11460; van de Wijngaart, D.J., Dubbink, H.J., van Royen, M.E., Trapman, J., Jenster, G., Androgen receptor coregulators: Recruitment via the coactivator binding groove (2012) Mol Cell Endocrinol, 352, pp. 57-69; Heemers, H.V., Tindall, D.J., Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex (2007) Endocr Rev, 28, pp. 778-808; Shi, L., Yan, P., Liang, Y., Sun, Y., Shen, J., Zhou, S., Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma (2017) Cell Death Dis, 8, p. e3171; Shi, L., Lin, H., Li, G., Sun, Y., Shen, J., Xu, J., Cisplatin enhances NK cells immunotherapy efficacy to suppress HCC progression via altering the androgen receptor (AR)-ULBP2 signals (2016) Cancer Lett, 373, pp. 45-56; Jiang, X., Kanda, T., Nakamoto, S., Miyamura, T., Wu, S., Yokosuka, O., Involvement of androgen receptor and glucose-regulated protein 78 kda in human hepatocarcinogenesis (2014) Exp Cell Res, 323, pp. 326-336; Ngo, H.K.C., Kim, D.H., Cha, Y.N., Na, H.K., Surh, Y.J., Nrf2 mutagenic activation drives hepatocarcinogenesis (2017) Cancer Res, 77, pp. 4797-4808; Lin, S.J., Chou, F.J., Li, L., Lin, C.Y., Yeh, S., Chang, C., Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7) (2017) Cancer Lett, 398, pp. 62-69; Cheng, M.A., Chou, F.J., Wang, K., Yang, R., Ding, J., Zhang, Q., Androgen receptor (AR) degradation enhancer ASC-J9((R)) in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth (2018) Cancer Lett, 417, pp. 182-191 [format_title_en_publication_en_pub_year] => 6f56bdad5a2e3529eb4394694f4b5f1e456480166 [abstract_en] => Background: Androgen receptor (AR) has a role in regulating malignancies and gender disparities in hepatocellular carcinoma (HCC). Recently, TLR4 activation is demonstrated to be required for HCC progression; however, whether and how TLR4 interacts with AR is largely unknown.; Methods: The tumorigenesis was detected in female and male mice induced by DEN/CCL4, then TLR4 and AR signals were detected in liver tissues by qPCR and FACS. The proliferation, colony formation and migration of HCC cell treated with TLR4 agonist LPS, or/and androgen DHT were evaluated in vitro. Furthermore, the expression of TLR4 and AR was detected by IHC in tissue microarray of HCC, and correlation of AR and TLR4 was defined.; Results: Male mice are more susceptible to develop HCC than female mice. Meanwhile, we found baseline TLR4 levels were higher in male mice than in female mice. AR expression in male mice was increased by treatment with DEN/CCL4. And, AR was constitutively expressed in human HCC cell lines. Dihydrotestosterone (DHT) stimulated TLR4 expression in both HepG2 and HepG2 2.15 cells, which could be blocked by silencing AR. On the other hand, treatment with LPS stimulated AR expression, but it was blocked by treatment with TLR4 antagonist and in cells deficient for TLR4. DHT treatment exacerbated TLR4-induced cellular proliferation, colony formation, migration, and invasion of HepG2 cells. The positive relationship between AR and TLR4 was confirmed in human HCC samples.; Conclusions: DHT-AR-TLR4 signaling enhances the development of HCC cells and facilitates their migration and invasion, demonstrating a mechanism underlying gender disparity in HCC. [scopus_id] => 55416640400;57213836522;57204707893;36018041700; [from_id] => 76,73 [cauthor_ad] => [Zhang, J]Shandong Univ, Sch Pharmaceut Sci, Inst Immunopharmaceut Sci, Jinan 250012, Shandong, Peoples R China. [hx_id] => 2378,2371 [doi] => 10.7150/jca.30682 [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [format_issn_issue_page_pub_year] => 1673065a8cc6ffc1db822699bcaaa4e0-1925113239 [title_en] => Androgen Receptor (AR)-TLR4 Crosstalk Mediates Gender Disparities in Hepatocellular Carcinoma Incidence and Progression [index_keyword] => androgen receptor; androstanolone; carbon tetrachloride; lipopolysaccharide; messenger RNA; toll like receptor 4; animal cell; animal experiment; animal model; animal tissue; Article; cancer growth; cancer incidence; carcinogenesis; cell invasion; cell migration; cell proliferation; colony formation; controlled study; female; fluorescence activated cell sorting; human; human tissue; immunofluorescence test; liver cell; liver cell carcinoma; liver tissue; male; mouse; nonhuman; protein expression; real time polymerase chain reaction; sex difference; tissue microarray; Western blotting [volume] => 11 [source_type] => 351 [pub_year] => 2020 [keyword_en] => AR; Gender bias; TLR4; Hepatocellular Carcinoma [article_id] => 819421,812476 [begin_page] => 1094 [hints] => 0 [publisher] => IVYSPRING INT PUBL [substance] => androstanolone, 521-18-6; carbon tetrachloride, 56-23-5; toll like receptor 4, 203811-83-0 [language] => English [issue] => 5 [issn] => 1837-9664 [batch] => 3422,3424 [publication_en] => JOURNAL OF CANCER [email] => zhangj65@sdu.edu.cn [sys_update_time] => 2020-03-13 09:56:09 [format_title_en_issn_pub_year] => d6e8382dbb08ac734048c1de2d619426150854751 [publication_iso] => J. Cancer [SYS_TAG] => 3 [end_page] => 1103 [page] => 1094-1103 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [cite_wos] => 0 [check_3Y] => 0 [delivery_No] => JW1OU [format_title] => [author_fn] => Han, Qiuju; Yang, Dan; Yin, Chunlai; Zhang, Jian [pages] => 10 [publication_29] => J CANCER [open_type] => DOAJ Gold, Green Published [pubmedID] => 31956356 [publication_type] => J [get_data] => 2020-03-06 [format_publication_cn] => [keyword_plu] => RESISTANT PROSTATE-CANCER; NK CELLS IMMUNOTHERAPY; HEPATITIS-B-VIRUS; ACTIVATION; HCC; COREGULATORS; MICROBIOTA; PROMOTES; EFFICACY [fund_ab] => This work was supported Shandong Provincial Key Research and Development; Program [grant number 2017GSF18159] and Shandong Provincial Natural; Science Foundation, China [grant number ZR2017BH029] and the Fundamental; Research Fund of Shandong University (2017JC004). [format_title_en] => 81ad23dd8726890242e9d6dabf51d327231092549 [publisher_city] => LAKE HAVEN [cauthor_order] => 4 [reference_No] => 34 [cite_awos] => 0 [wos_No] => WOS:000502829400011 [sys_priority_field] => 73 [format_wos_No] => 7a35e2d1c7d068cb8a18bd99f6a169d0-1232514087 [wos_sub] => Oncology [research_area] => Oncology [cauthor_back] => Zhang, J [check_180] => 0 [publisher_ad] => PO BOX 4546, LAKE HAVEN, NSW 2263, AUSTRALIA [format_publication_en] => dad2f4de504f5b4b9d946e945cae5e5c1034412683 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => journalofcancer [jl_country] => 中国 [jl_keyword_en] => ar,tlr4,genderbias,hepatocellularcarcinoma [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => ivyspringintpubl [company_id] => 0,174 [author_id] => 21049,25453,25452,25457,25456,25455,25445,25446,25447 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 韩秋菊 [irtag] => 7 [t_index] => 0 [person_id] => 21049 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张健 [irtag] => 7 [t_index] => 4 [person_id] => 25457 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张剑 [irtag] => 7 [t_index] => 4 [person_id] => 25453 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张健 [irtag] => 7 [t_index] => 4 [person_id] => 25455 ) [4] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张健 [irtag] => 7 [t_index] => 4 [person_id] => 25456 ) [5] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张剑 [irtag] => 7 [t_index] => 4 [person_id] => 25452 ) [6] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张嘉宁 [irtag] => 7 [t_index] => 4 [person_id] => 25445 ) [7] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张建 [irtag] => 7 [t_index] => 4 [person_id] => 25446 ) [8] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 张建 [irtag] => 7 [t_index] => 4 [person_id] => 25447 ) ) [sys_subject_sort] => 0 [college_parent_id] => 174 [company_test] => Array [id] => RAA003ABe-eYmRww6g3I [tags] => 0 ) [16] => Array ( [cauthor] => Zhang, Ya-Nan(nn8210@126.com) [issn] => 0013-4686 [school_id] => 117 [controlled_terms] => Efficiency - Electron transport properties - II-VI semiconductors - Metal nanoparticles - Nanostructured materials - Organometallics - Perovskite - Perovskite solar cells - Zinc oxide - ZnO nanoparticles [batch2] => 15 [hb_batch] => 3418 [ei_No] => 20194807739516 [tag] => 0 [author_en] => Zhang, YN; Li, B; Fu, L; Li, Q; Yin, LW [sys_level_num] => 15_8 [abstract_en] => We adopt Metal-Organic-Framework (MOF)-derived zinc oxide (ZnO) as electron extraction material for hybrid cationic perovskite solar cells for the first time, breaking the prevailing paradigm of using oxides nanoparticle as electron extraction layer. MOF-derived ZnO with a polyhedral morphology and abundant internal porous structure can increase light harvesting ability and optimize the interfacial contact with perovskite. In contrast to conventional ZnO nanoparticles, the introduction of MOF-derived ZnO will achieve more efficient electron extraction, reduction of trapped state density and lower electron-hole recombination probability, thus significantly increase the fill factor and short-circuit current density of the cells. MOF-derived ZnO based perovskite solar cells exhibit a champion power conversion efficiency of 18.1% coupled with improved fill factor of 0.74 and short-circuit current density of 22.1 mA cm(-2). Simultaneously, there is almost no hysteresis effect, and performance attenuation of the device in the ambient atmosphere over time can be suppressed. The performance improvement of perovskite solar cells stems from improved light harvesting efficiency in a wide wavelength range, as well as enhanced carrier extraction efficiency resulted from the increase of interface area between MOF-derived ZnO and perovskites. (C) 2019 Elsevier Ltd. All rights reserved. [format_doi] => edd024814f9af52944ffc180aeb00390-1921312656 [sys_update_time] => 2020-03-13 09:40:17 [cauthor_back] => Zhang, YaNan@@@Zhang, YN@@@Yin, LW [format_title_en_publication_en_pub_year] => cdde4c68c7e053b8ec60b595670907eb-1663643379 [classification_No] => 482.2 Minerals - 761 Nanotechnology - 802.3 Chemical Operations - 804.1 Organic Compounds - 804.2 Inorganic Compounds - 913.1 Production Engineering [document_No] => 135280 [main_eword] => Extraction [format_ei_No] => 77390d46d3eea81521ecee6cd51f3bb195642642 [from_id] => 76,74,73 [email] => nn8210@126.com; yinlw@sdu.edu.cn [classification_pub] => ELCAA [datebase] => Scopus [numerical_index] => Percentage 1.81e+01% [sys_jg_type] => 11,3 [title_en] => MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells [volume] => 330 [author_fn] => Zhang, Ya-Nan; Li, Bo; Fu, Lin; Li, Qun; Yin, Long-Wei [pub_year] => 2020 [pub_date] => JAN 10 [hints] => 0 [publisher] => PERGAMON-ELSEVIER SCIENCE LTD [doi] => 10.1016/j.electacta.2019.135280 [language] => English [source_type] => 351 [reference_No] => 46 [batch] => 3422,3418,3424 [publication_en] => ELECTROCHIMICA ACTA [hx_id] => 2376,2378,2371 [author_in] => [Zhang, Ya-Nan; Li, Qun] Taishan Univ, Coll Chem & Chem Engn, Tai An 271021, Shandong, Peoples R China.@@@ [Zhang, Ya-Nan; Li, Bo; Fu, Lin; Yin, Long-Wei] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China. [format_title_en_issn_pub_year] => bc86e680b5c478f144d6c97be47b21b5-47727519 [article_id] => 813059,809060,814471 [cauthor_order] => 1,1,5 [uncontrolled_terms] => Electron extraction - Electron transport layers - Electron-hole recombination - Interfacial contact - Light-harvesting - Metal organic framework - Polyhedral morphologies - Power conversion efficiencies [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [fund_No] => National Nature Science Foundation of ChinaNational Natural Science; Foundation of China [51702228, 51872171]; Shandong Province Natural; Science FoundationNatural Science Foundation of Shandong Province; [ZR2017BEM014, ZR201801290005]; Tai\'an Science and Technology; Development Plan [2018GX0075]; Talent Introduction Project of Taishan; University [Y-01-2018017]; Shandong Province Higher Educational Science; and Technology Program [J17KA023] [index_keyword] => Efficiency; Electron transport properties; II-VI semiconductors; Metal nanoparticles; Nanostructured materials; Organometallics; Perovskite; Perovskite solar cells; Zinc oxide; ZnO nanoparticles; Electron extraction; Electron transport layers; Electron-hole recombination; Interfacial contact; Light-harvesting; Metal organic framework; Polyhedral morphologies; Power conversion efficiencies; Extraction [format_title] => [reference] => Zhou, T., Wang, M., Zang, Z., Fang, L., Stable dynamics performance and high efficiency of ABX3 -type super-alkali perovskites first obtained by introducing H5O2 cation (2019) Adv. Energy Mater., p. 1900664; Miyasaka, T., Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices (2015) Chem. Lett., 44, pp. 720-729; Snaith, H.J., Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells (2013) J. Phys. Chem. Lett., 4, pp. 3623-3630; Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites (2012) Science, 338, pp. 643-647; Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells (2014) Nat. Mater., 13, pp. 897-903; Mahmood, K., Swain, B.S., Amassian, A., Double-layered ZnO nanostructures for efficient perovskite solar cells (2014) Nanoscale, 6, pp. 14674-14678; Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, G., ZnO Nanostructures for dye-sensitized solar cells (2009) Adv. Mater., 21, pp. 4087-4108; Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications (2004) J. Phys. Condens. Matter, 16, pp. R829-R858; Liu, H., Huang, Z., Wei, S., Zheng, L., Xiao, L., Gong, Q., Nano-structured electron transporting materials for perovskite solar cells (2016) Nanoscale, 8, pp. 6209-6221; Zhang, P., Wu, J., Zhang, T., Wang, Y., Liu, D., Chen, H., Ji, L., Li, S., Perovskite solar cells with ZnO electron-transporting materials (2018) Adv. Mater., 30, p. 1703737; Ryu, U., Jee, S., Park, J.S., Han, I.K., Lee, J.H., Park, M., Choi, K.M., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells (2018) ACS Nano, 12, pp. 4968-4975; Liu, D.Y., Kelly, T.L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques (2014) Nat. Photonics, 8, pp. 133-138; Song, J., Hu, W., Wang, X.-F., Chen, G., Tian, W., Miyasaka, T., HC(NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells (2016) J. Mater. Chem., 4, p. 8435; Ginting, R.T., Jung, E.-S., Jeon, M.-K., Jin, W.-Y., Song, M., Kang, J.-W., Low-temperature operation of perovskite solar cells: with efficiency improvement and hysteresis-less (2016) Nano Energy, 27, pp. 569-576; Yang, J., Siempelkamp, B.D., Mosconi, E., Angelis, F.D., Kelly, T.L., Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO (2015) Chem. Mater., 27, pp. 4229-4236; Cheng, Y., Yang, Q.D., Xiao, J., Xue, Q., Li, H.-W., Guan, Z., Yip, H.L., Tsang, S.W., Decomposition of organometal halide perovskite films on zinc oxide nanoparticles (2015) ACS Appl. Mater. Interfaces, 7, pp. 19986-19993; Zhang, P., Wu, J., Wang, Y., Sarvari, H., Liu, D., Chen, Z.D., Li, S., Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition (2017) J. Mater. Chem., 5, pp. 17368-17378; Kim, H.-S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E.J., Park, N.-G., Bisquert, J., Mechanism of carrier accumulation in perovskite thin-absorber solar cells (2013) Nat. Commun., 4, p. 2242; Sun, Y., Seo, J.H., Takacs, C.J., Seifter, J., Heeger, A.J., Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer (2011) Adv. Mater., 23, pp. 1679-1683; Ahmad, M., Ahmed, E., Zhang, Y., Khalid, N., Xu, J., Ullah, M., Hong, Z., Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis (2013) Curr. Appl. Phys., 13, pp. 697-704; Zhang, R., Fei, C., Li, B., Fu, H., Tian, J., Cao, G., Continuous size tuning of monodispersed ZnO nanoparticles and its size effect on the performance of perovskite solar cells (2017) ACS Appl. Mater. Interfaces, 9, pp. 9785-9794; Tang, J.-F., Tseng, Z.-L., Chen, L.-C., Chu, S.-Y., ZnO nanowalls grown at low-temperature for electron collection in high-efficiency perovskite solar cells (2016) Sol. Energy Mater. Sol. Cells, 154, pp. 18-22; Ryu, U., Jee, S., Park, J., Han, I.K., Lee, J.H., Park, M., Choi, K.M., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells (2018) ACS Nano, 12, pp. 4968-4975; Chang, T.-H., Kung, C.-W., Chen, H.-W., Huang, T.-Y., Kao, S.-Y., Lu, H.-C., Lee, M.-H., Ho, K.-C., Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals (2015) Adv. Mater., 27, pp. 7229-7235; Sung, S.D., Ojha, D.P., You, J.S., Lee, J., Kim, J., Lee, W.I., 50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells (2015) Nanoscale, 7, pp. 8898-8906; Moon, B.C., Park, J.H., Lee, D.K., Tsvetkov, N., Ock, I., Choi, K.M., Kang, J.K., Broadband light absorption and efficient charge separation using a light scattering layer with mixed cavities for high-performance perovskite photovoltaic cells with stability (2017) Small, 13, p. 1700418; Wu, W.-Q., Huang, F., Chen, D., Cheng, Y.-B., Caruso, R.A., Thin Films of Dendritic anatase titania nanowires enable effective hole-blocking and efficient light-harvesting for high-performance mesoscopic perovskite solar cells (2015) Adv. Funct. Mater., 25, pp. 3264-3272; Jang, S., Yoon, J., Ha, K., Ki, M., Kim, D., Kim, S.M., Kang, S.M., Choi, M., Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells (2016) Nano Energy, 22, pp. 499-506; Yang, I.S., You, J.S., Sung, S.D., Chung, C.W., Kim, J., Leen, W.I., Novel spherical TiO2 aggregates with diameter of 100 nm for efficient mesoscopic perovskite solar cells (2016) Nano Energy, 20, pp. 272-282; Li, Z., Li, C., Ge, X., Ma, J., Zhang, Z., Li, Q., Wang, C., Yin, L., Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries (2016) Nano Energy, 23, pp. 15-26; Li, Q., Yin, L., Li, Z., Wang, X., Qi, Y., Ma, J., Copper doped hollow structured manganese oxide mesocrystals with controlled phase structure and morphology as anode materials for lithium ion battery with improved electrochemical performance (2013) ACS Appl. Mater. Interfaces, 5, pp. 10975-10984; Kang, S.M., Jang, S., Lee, J., Yoon, J., Yoo, D., Lee, J., Choi, M., Park, N., Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells (2016) Small, p. 201600428; You, J.B., Meng, L., Song, T.B., Guo, T.F., Yang, Y., Chang, W.H., Hong, Z.R., Yang, Y., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers (2016) Nat. Nanotechnol., 11, pp. 75-81; Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells (2014) Nat. Commun., 5, p. 5784; Liang, P.W., Chueh, C.C., Williams, S.T., Jen, A.K.Y., Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells (2015) Adv. Energy Mater., 5, p. 1402321; Cao, J., Liu, Y.M., Jing, X.J., Yin, J., Li, J., Xu, B., Tan, Y.Z., Zheng, N.F., Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells (2015) J. Am. Chem. Soc., 137, pp. 10914-10917; Gonzalez-Pedro, V., Juarez-Perez, E.J., Arsyad, W.-S., Barea, E.M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., General working principles of CH3NH3PbX3 perovskite solar cells (2014) Nano Lett., 14, pp. 888-893; Laban, W.A., Etgar, L., Depleted hole conductor-free lead halide iodide heterojunction solar cells (2013) Energy Environ. Sci., 6, pp. 3249-3253; Yadav, P., Dar, M.I., Arora, N., Alharbi, E.A., Giordano, F., Zakeeruddin, S.M., Grätzel, M., The role of rubidium in multiple-cation- based high-efficiency perovskite solar cells (2017) Adv. Mater., 29, p. 1701077; Yang, G., Wang, C., Lei, H., Zheng, X., Qin, P., Xiong, L., Zhao, X., Fang, G., Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement (2017) J. Mater. Chem. A., 5, pp. 1658-1666; Niu, T., Lu, J., Munir, R., Li, J., Barrit, D., Zhang, X., Hu, H., Liu, S., Stable high-performance perovskite solar cells via grain boundary passivation (2018) Adv. Mater., p. 1706576; Bube, R.H., Trap density determination by space-charge-limited currents (1962) J. Appl. Phys., 33, p. 1733; Yang, D., Zhou, X., Yang, R., Yang, Z., Yu, W., Wang, X., Li, C., Chang, R.P.H., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells (2016) Energy Environ. Sci., 9, pp. 3071-3078; Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., Snaith, H.J., Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells (2014) Adv. Funct. Mater., 24, pp. 151-157; Kim, H.S., Lee, J.W., Yantara, N., Boix, P.P., Kulkarni, S.A., Mhaisalkar, S., Gratzel, M., Park, N.G., High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 Nanorod and CH3NH3PbI3 perovskite sensitizer (2013) Nano Lett., 13, pp. 2412-2417; Song, J., Liu, L., Wang, X., Chen, G., Tian, W., Miyasaka, T., Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber (2017) J. Mater. Chem., 5, pp. 13439-13447; An, Q., Fassl, P., Hofstetter, Y.J., Becker-Koch, D., Bausch, A., Hopkinson, P.E., Vaynzof, Y., High performance planar perovskite solar cells by ZnO electron transport layer engineering (2017) Nano Energy, 39, pp. 400-408 [scopus_id] => 57191041374;57188640408;57201299371;57211305406;57204699375; [format_scopus_No] => d4f8cbdc61adfa5eb90a79fe4d2ec32c-684350980 [keyword_en] => MOF-Derived ZnO; Perovskite solar cells; Electron extraction; Light; harvesting [format_publication_cn] => [publication_iso] => Electrochim. Acta [format_title_en] => 6dd5862c438dfdec3b334c242395e344-1433422047 [sys_priority_field] => 73 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075368717&doi=10.1016%2fj.electacta.2019.135280&partnerID=40&md5=44103fdb0b2a9c678426f92a4cb32e23 [standard_in] => College of Chemistry and Chemical Engineering, Taishan University, Tai\'an, 271021, China; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China [scopus_No] => 2-s2.0-85075368717 [format_publication_en] => 25bcaeab36355738c969ca0dd04ccab5-570936206 [cite_wos] => 0 [check_3Y] => 20 [delivery_No] => JU1WV [cauthor_ad] => [Zhang, YN; Yin, LW]Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China. [pages] => 8 [publication_29] => ELECTROCHIM ACTA [eissn] => 1873-3859 [publication_type] => J [get_data] => 2020-03-06 [keyword_plu] => HIGHLY EFFICIENT; LEAD HALIDE; THIN-FILMS; PERFORMANCE; NANOSTRUCTURES; MORPHOLOGY; NM [fund_ab] => This work was supported by the National Nature Science Foundation of; China (No.: 51702228, 51872171), Shandong Province Natural Science; Foundation (ZR2017BEM014, ZR201801290005), Tai\'an Science and Technology; Development Plan (2018GX0075), the Talent Introduction Project of; Taishan University (Y-01-2018017) and Shandong Province Higher; Educational Science and Technology Program (J17KA023). [publisher_city] => OXFORD [cite_awos] => 0 [wos_No] => WOS:000501468400062 [format_wos_No] => d9f32e8c105927b8155a01b674c6b2b91342167549 [wos_sub] => Electrochemistry [research_area] => Electrochemistry [check_180] => 20 [publisher_ad] => THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => electrochimicaacta [jl_country] => 中国 [jl_keyword_en] => mofderivedzno,harvesting,light,perovskitesolarcells,electronextraction [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => pergamonelsevierscienceltd [company_id] => 0,143 [author_id] => 25104,21610,21608,21609 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 李波 [irtag] => 7 [t_index] => 0 [person_id] => 21609 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 李博 [irtag] => 7 [t_index] => 0 [person_id] => 21610 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 李波 [irtag] => 7 [t_index] => 0 [person_id] => 21608 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 尹龙卫 [irtag] => 7 [t_index] => 5 [person_id] => 25104 ) ) [sys_subject_sort] => 0 [college_parent_id] => 143 [company_test] => Array [id] => FgA403ABe-eYmRwwBisB [tags] => 0 ) [17] => Array ( [standard_in] => School of Software, Shandong University, Jinan, Shandong, 250101, China; State Grid Anhui Electric Power Company, Hefei, Anhui, 230061, China; First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China [cauthor] => Huang, Y(huang_yan74@163.com) [school_id] => 117 [scopus_No] => 2-s2.0-85079398959 [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079398959&doi=10.1155%2f2020%2f1782531&partnerID=40&md5=1a78a4b5021899c45d01c40374e5b15b [tag] => 0 [author_en] => Sun, LM; Kong, Q; Huang, Y; Yang, JS; Wang, SS; Zou, RQ; Yin, YL; Peng, JL [format_scopus_No] => 36dbaad2f23b5de8e73be1358cb892a5462395728 [format_doi] => d1c5b901831682136764b3ea5270d911-1794586774 [sys_update_time] => 2020-03-13 09:56:09 [fund_No] => National Natural Science Foundation of ChinaNational Natural Science; Foundation of China [61872398] [reference] => Subburaj, K., Ravi, B., Agarwal, M., Automated identification of anatomical landmarks on 3d bone models reconstructed from CT scan images (2009) Computerized Medical Imaging and Graphics, 33 (5), pp. 359-368. , 2-s2.0-67349129682; Krcah, M., Székely, G., Blanc, R., Fully Automatic and Fast Segmentation of the Femur Bone from 3d-ct Images with No Shape Prior, pp. 2087-2090. , Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011 March 2011 Chicago, IL, USA 2-s2.0-80055053887; Jang, S.-W., Seo, Y.-J., Yoo, Y.-S., Kim, Y.S., Computed tomographic image analysis based on fem performance comparison of segmentation on knee joint reconstruction (2014) The Scientific World Journal, 2014 (2). , 235858 2-s2.0-84916613034; Wu, D., Sofka, M., Birkbeck, N., Zhou, S.K., Segmentation of Multiple Knee Bones from CT for Orthopedic Knee Surgery Planning, pp. 372-380. , Proceedings of the 17th International Conference Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014 September 2014 Boston, MA, USA 2-s2.0-84909632803; Mezlini, H., Youssef, R., Bouhadoun, H., High Resolution Volume Quantification of the Knee Joint Space Based on A Semi-automatic Segmentation of Computed Tomography Images, pp. 157-161. , Proceedings of the International Conference on Systems, Signals and Image Processing, IWSSIP 2015 September 2015 London, UK 2-s2.0-84961718544; Kong, Q., Wang, S., Yang, J., Automatic Measurement on CT Images for Patella Dislocation Diagnosis, pp. 1130-1134. , Proceedings of the IEEE International Conference on Image Processing, ICIP 2013 September 2013 Melbourne, Australia 2-s2.0-84897771891; Zhang, Y.J., A survey on evaluation methods for image segmentation (1996) Pattern Recognition, 29 (8), pp. 1335-1346. , 2-s2.0-0030216623; Pal, N.R., Pal, S.K., A review on image segmentation techniques (1993) Pattern Recognition, 26 (9), pp. 1277-1294. , 2-s2.0-0027658896; Cuevas, E., Zaldivar, D., Cisneros, M.A.P., A novel multi-threshold segmentation approach based on differential evolution optimization (2010) Expert Systems with Applications, 37 (7), pp. 5265-5271. , 2-s2.0-77950187403; Soille, P., (2003) Morphological Image Analysis-Principles and Applications, , Berlin, Germany Springer Science & Business Media 2-s2.0-0034799952; Zana, F., Klein, J., Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation (2001) IEEE Transactions on Image Processing, 10 (7), pp. 1010-1019. , 2-s2.0-0035397820; Canny, J.F., A computational approach to edge detection (1986) IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (6), pp. 679-698. , 2-s2.0-0022808786; Ronfard, R., Region-based strategies for active contour models (1994) International Journal of Computer Vision, 13 (2), pp. 229-251. , 2-s2.0-0028518095; Derraz, F., Taleb-Ahmed, A., Chikh, A., Bereksi-Reguig, F., Improved Edge Map of Geometrical Active Contour Model Based on Coupling to Anisotropic Diffusion Filtering, pp. 1097-1101. , Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2007 2007 Boston, MA, USA Harvard Medical School 2-s2.0-47649089069; Fu, Y., Cao, Z., Pi, Y., Multi-region segmentation of sar image by a multiphase level set approach (2008) Journal of Electronics, 25 (4), pp. 556-561. , 2-s2.0-48249116758; Li, C., Gore, J.C., Davatzikos, C., Multiplicative intrinsic component optimization (mico) for mri bias field estimation and tissue segmentation (2014) Magnetic Resonance Imaging, 32 (7), pp. 913-923. , 2-s2.0-84904068391; Chan, T.F., Vese, L.A., Active contours without edges (2001) IEEE Transactions on Image Processing, 10 (2), pp. 266-277. , 2-s2.0-0035248865; Li, C., Kao, C., Gore, J.C., Ding, Z., Minimization of region-scalable fitting energy for image segmentation (2008) IEEE Transactions on Image Processing, 17 (10), pp. 1940-1949. , 2-s2.0-52649131914; Wang, L., He, L., Mishra, A., Li, C., Active contours driven by local Gaussian distribution fitting energy (2009) Signal Processing, 89 (12), pp. 2435-2447. , 2-s2.0-67651092103; Zhu, S., Bu, X., Zhou, Q., A novel edge preserving active contour model using guided filter and harmonic surface function for infrared image segmentation (2018) IEEE Access, 6, pp. 5493-5510. , 2-s2.0-85038389948; Li, C., Huang, R., Ding, Z., Gatenby, C., Metaxas, D.N., Gore, J.C., A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI (2011) IEEE Transactions on Image Processing, 20 (7), pp. 2007-2016. , 2-s2.0-79959576791; Zhang, K., Song, H., Zhang, L., Active contours driven by local image fitting energy (2010) Pattern Recognition, 43 (4), pp. 1199-1206. , 2-s2.0-74449089236; Shiffman, S., Rubin, G.D., Napel, S., Medical image segmentation using analysis of isolable-contour maps (2000) IEEE Transactions on Medical Imaging, 19 (11), pp. 1064-1074. , 2-s2.0-0034310511; Kang, Y., Engelke, K., A new accurate and precise 3-d segmentation method for skeletal structures in volumetric ct data (2003) IEEE Transactions on Medical Imaging, 22 (5), p. 586. , K. W. A. 2-s2.0-0038782206; Fripp, J., Crozier, S., Warfield, S.K., Ourselin, S., Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee (2010) IEEE Transactions on Medical Imaging, 29 (1), pp. 55-64. , 2-s2.0-73849129947; Rueda, S., Fathima, S., Knight, C.L., Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: A grand challenge (2014) IEEE Transactions on Medical Imaging, 33 (4), pp. 797-813. , 2-s2.0-84897981539; Du, X., Zhang, W., Zhang, H., Deep regression segmentation for cardiac bi-ventricle MR images (2018) IEEE Access, 6, pp. 3828-3838. , 2-s2.0-85040047914; Soomro, T.A., Khan, T.M., Khan, M.A.U., Gao, J., Paul, M., Zheng, L., Impact of ICA-based image enhancement technique on retinal blood vessels segmentation (2018) IEEE Access, 6, pp. 3524-3538. , 2-s2.0-85040907705; Ren, X., Zheng, Y., Zhao, Y., Drusen segmentation from retinal images via supervised feature learning (2018) IEEE Access, 6, pp. 2952-2961. , 2-s2.0-85040051881; Du, C., Gao, S., Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network (2017) IEEE Access, 5, pp. 15750-15761. , 2-s2.0-85028919325; Punithakumar, K., Boulanger, P., Noga, M., A GPU-accelerated deformable image registration algorithm with applications to right ventricular segmentation (2017) IEEE Access, 5, pp. 20374-20382. , 2-s2.0-85030790975; Hawkins, S.H., Korecki, J.N., Balagurunathan, Y., Predicting outcomes of nonsmall cell lung cancer using CT image features (2014) IEEE Access, 2, pp. 1418-1426. , 2-s2.0-84923319145; Truc, P.T.H., Kim, T., Lee, S., Lee, Y., A study on the feasibility of active contours on automatic CT bone segmentation (2010) Journal of Digital Imaging, 23 (6), pp. 793-805. , 2-s2.0-78650608319; Ma, Z., Tavares, J.M.R.S., Jorge, R.N., Mascarenhas, T., A review of algorithms for medical image segmentation and their applications to the female pelvic cavity (2010) Computer Methods in Biomechanics and Biomedical Engineering, 13 (2), pp. 235-246. , 2-s2.0-77954713643; Ahmed, M.N., Yamany, S.M., Mohamed, N.A., Farag, A.A., Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data (2002) IEEE Transactions on Medical Imaging, 21 (3), pp. 193-199. , 2-s2.0-0036489378; Yao, J., Bliton, J., Summers, R.M., Automatic segmentation and measurement of pleural effusions on CT (2013) IEEE Transactions on Biomedical Engineering, 60 (7), pp. 1834-1840. , 2-s2.0-84879942440 [format_title_en_publication_en_pub_year] => a226e494d9a40a1ad1737334444a10ab1378322039 [abstract_en] => Traditionally, for diagnosing patellar dislocation, clinicians make manual geometric measurements on computerized tomography (CT) images taken in the knee area, which is often complex and error-prone. Therefore, we develop a prototype CAD system for automatic measurement and diagnosis. We firstly segment the patella and the femur regions on the CT images and then measure two geometric quantities, patellar tilt angle (PTA), and patellar lateral shift (PLS) automatically on the segmentation results, which are finally used to assist in diagnoses. The proposed quantities are proved valid and the proposed algorithms are proved effective by experiments. [scopus_id] => 57214882697;56103969300;57214880764;57212326631;56104118800;56104051700;8981026100;7401958611; [from_id] => 76,73 [cauthor_ad] => [Huang, Y]Shandong Univ, Sch Software, Jinan 250101, Shandong, Peoples R China@@@[Yang, JS]Shandong Univ Tradit Chinese Med, Affiliated Hosp 1, Jinan 250014, Shandong, Peoples R China. [hx_id] => 2378,2371 [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11 [title_en] => Automatic Segmentation and Measurement on Knee Computerized Tomography Images for Patellar Dislocation Diagnosis [author_in] => [Sun, Limin; Huang, Yan; Yin, Yilong; Peng, Jingliang] Shandong Univ, Sch Software, Jinan 250101, Shandong, Peoples R China.@@@ [Kong, Qi] State Grid Anhui Elect Power Co, Hefei 230061, Anhui, Peoples R China.@@@ [Yang, Jiushan; Wang, Shaoshan; Zou, Ruiqi] Shandong Univ Tradit Chinese Med, Affiliated Hosp 1, Jinan 250014, Shandong, Peoples R China. [volume] => 2020 [source_type] => 351 [pub_year] => 2020 [article_id] => 819359,813444 [hints] => 1 [publisher] => HINDAWI LTD [doi] => 10.1155/2020/1782531 [language] => English [issn] => 1748-670X [batch] => 3422,3424 [publication_en] => COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE [email] => sunliminsdu@163.com; lindaxian@yeah.net; huang_yan74@163.com;; yangjiushan@163.com; shaoshan278@sohu.com; zrq197935@163.com;; ylyin@sdu.edu.cn; jingliap@163.com [document_No] => 1782531 [format_title_en_issn_pub_year] => 2ecc7093c334a1fd2bd45bdae955e8c4687151721 [publication_iso] => Comput. Math. Method Med. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [cite_wos] => 0 [check_3Y] => 0 [delivery_No] => KN1LE [format_title] => [author_fn] => Sun, Limin; Kong, Qi; Huang, Yan; Yang, Jiushan; Wang, Shaoshan; Zou, Ruiqi; Yin, Yilong; Peng, Jingliang [pages] => 13 [publication_29] => COMPUT MATH METHOD M [open_type] => DOAJ Gold [eissn] => 1748-6718 [publication_type] => J [get_data] => 2020-03-06 [format_publication_cn] => [keyword_plu] => ACTIVE CONTOURS DRIVEN; BIAS FIELD ESTIMATION [fund_ab] => The authors thank Xian Wu for his help in rendering the images for; Figure 2. This work was supported by the National Natural Science; Foundation of China (grant no. 61872398). [format_title_en] => 163c222f083bcd3d358cc7a37e6e282f1416914484 [publisher_city] => LONDON [pub_date] => JAN 28 [cauthor_order] => 3,4 [reference_No] => 36 [cite_awos] => 0 [wos_No] => WOS:000514600200001 [sys_priority_field] => 73 [format_wos_No] => 662c98a398061ebfd89c80238ef424aa-1440434370 [wos_sub] => Mathematical & Computational Biology [research_area] => Mathematical & Computational Biology [cauthor_back] => Huang, Y@@@Yang, JS [check_180] => 0 [publisher_ad] => ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND [format_publication_en] => 10d802888c1b0289d64f731bb0ed1c561299717500 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => computationalandmathematicalmethodsinmedicine [jl_country] => 中国 [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => hindawiltd [company_id] => 0 [author_id] => 23020,25114,21296 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 3 [name] => 黄燕 [irtag] => 7 [t_index] => 3 [person_id] => 21296 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 8 [name] => 彭京亮 [irtag] => 7 [t_index] => 0 [person_id] => 23020 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 7 [name] => 尹义龙 [irtag] => 7 [t_index] => 0 [person_id] => 25114 ) ) [id] => BgA003ABe-eYmRww6A0C [tags] => 0 ) [18] => Array ( [cite_scopus] => 1 [cauthor] => Zou, G(zouguizheng@sdu.edu.cn) [school_id] => 117 [scopus_No] => 2-s2.0-85075377230 [author_in] => [Gao, Xuwen; Fu, Kena; Fu, Li; Zhang, Bin; Zou, Guizheng] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China.@@@ [Wang, Huaisheng] Liaocheng Univ, Dept Chem, Liaocheng 252059, Shandong, Peoples R China. [batch2] => 15 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075377230&doi=10.1016%2fj.bios.2019.111880&partnerID=40&md5=412a7be2afd20d07b8a2a899d940c4c3 [tag] => 0 [author_en] => Gao, XW; Fu, KN; Fu, L; Wang, HS; Zhang, B; Zou, GZ [publication_en] => BIOSENSORS & BIOELECTRONICS [format_scopus_No] => 677de94982cd80c0a617b8e82e5e991c414166480 [format_doi] => 0e5018bed3cb929a8e859e4d53deb40e-1085060898 [sys_update_time] => 2020-03-13 09:56:31 [fund_No] => National Natural Science Foundation of ChinaNational Natural Science; Foundation of China [21427808, 21375077]; Fundamental Research Funds of; Shandong University [2018JC017] [reference] => Cao, J.T., Wang, Y.L., Zhang, J.J., Zhou, Y.J., Ren, S.W., Liu, Y.M., (2016) RSC Adv., 6 (89), pp. 86682-86687; Chen, C., Zhang, P.F., Gao, G.H., Gao, D.Y., Yang, Y., Liu, H., Wang, Y.H., Cai, L.T., (2014) Adv. Mater., 26 (36), pp. 6313-6317; Chen, P.C., Liu, G.L., Zhou, Y., Brown, K.A., Chernyak, N., Hedrick, J.L., He, S., Mirkin, C.A., (2015) J. Am. Chem. Soc., 137 (28), pp. 9167-9173; Chen, X.Q., Liu, Y., Ma, Q., (2018) J. Mater. Chem., C 6 (5), pp. 942-959; Dong, H., Lei, J., Ding, L., Wen, Y., Ju, H., Zhang, X., (2013) Chem. Rev., 113 (8), pp. 6207-6233; Escobedo, J.O., Rusin, O., Lim, S., Strongin, R.M., (2010) Curr. Opin. Chem. Biol., 14 (1), pp. 64-70; Guo, Z.Q., Park, S., Yoon, J., Shin, I., (2014) Chem. Soc. Rev., 43 (1), pp. 16-29; He, Y., Zhong, Y., Su, Y., Lu, Y., Jiang, Z., Peng, F., Xu, T., Lee, S.-T., (2011) Angew. Chem. Int. Ed., 50 (25), pp. 5695-5698; He, Y.P., Hou, S.F., Yang, L.Q., Zhang, F., Zou, G.Z., (2018) Chem. Eur J., 24 (38), pp. 9592-9597; He, Y.P., Yang, L.Q., Zhang, F., Zhang, B., Zou, G.Z., (2018) J. Phys. Chem. Lett., 9 (20), pp. 6089-6095; He, Y.P., Zhang, F., Zhang, B., Zou, G.Z., (2018) Anal. Chem., 90 (8), pp. 5474-5480; Hercules, D.M., (1964) Science, 145 (363), pp. 808-809; Hesari, M., Barbon, S.M., Staroverov, V.N., Ding, Z., Gilroy, J.B., (2015) Chem. Commun., 51 (18), pp. 3766-3769; Hesari, M., Ding, Z.F., (2017) Acc. Chem. Res., 50 (2), pp. 218-230; Hesari, M., Swanick, K.N., Lu, J.S., Whyte, R., Wang, S., Ding, Z., (2015) J. Am. Chem. Soc., 137 (35), pp. 11266-11269; Hu, L.Z., Xu, G.B., (2010) Chem. Soc. Rev., 39 (8), pp. 3275-3304; Huang, J.Y., Zhao, L., Lei, W., Wen, W., Wang, Y.J., Bao, T., Xiong, H.Y., Wang, S.F., (2018) Biosens. Bioelectron., 99, pp. 28-33; Kim, J.M., Jeong, S., Song, J.K., Kim, J., (2018), pp. 2838-2841. , 54(23); Kirkwood, N., Monchen, J.O.V., Crisp, R.W., Grimaldi, G., Bergstein, H.A.C., du Fosse, I., van der Stam, W., Houtepen, A.J., (2018) J. Am. Chem. Soc., 140 (46), pp. 15712-15723; Li, J., Cao, Y., Hinman, S.S., McKeating, K.S., Guan, Y.W., Hu, X.Y., Cheng, Q., Yang, Z.J., (2018) Biosens. Bioelectron., 100, pp. 304-311; Li, L.L., Chen, Y., Zhu, J.J., (2017) Anal. Chem., 89 (1), pp. 358-371; Li, X.Y., Duan, S., Liu, H.C., Chen, G.Y., Luo, Y., Agren, H., (2019) J. Phys. Chem. Lett., 10 (3), pp. 487-492; Liang, G.D., Liu, S.F., Zou, G.Z., Zhang, X.L., (2012) Anal. Chem., 84 (24), pp. 10645-10649; Liang, G.D., Shen, L.P., Zhang, X.L., Zou, G.Z., (2011) Eur. J. Inorg. Chem., 25, pp. 3726-3730; Liu, J.L., Zhang, J.Q., Tang, Z.L., Zhuo, Y., Chai, Y.Q., Yuan, R., (2019) Chem. Sci., 10 (16), pp. 4497-4501; Liu, S.F., Zhang, X., Yu, Y.M., Zou, G.Z., (2014) Anal. Chem., 86 (5), pp. 2784-2788; Liu, S.L., Zhang, Q.H., Zhang, L., Gu, L., Zou, G.Z., Bao, J.C., Dai, Z.H., (2016) J. Am. Chem. Soc., 138 (4), pp. 1154-1157; Liu, Z.Y., Qi, W.J., Xu, G.B., (2015) Chem. Soc. Rev., 44 (10), pp. 3117-3142; Long, X.Y., Zhang, F., He, Y.P., Hou, S.F., Zhang, B., Zou, G.Z., (2018) Anal. Chem., 90 (5), pp. 3563-3569; Meng, L., Wang, S., Cao, F., Tian, W., Long, R., Li, L., (2019) Angew. Chem. Int. Ed., 58, pp. 6761-6765; Miao, W.J., (2008) Chem. Rev., 108 (7), pp. 2506-2553; Nepomnyashchii, A.B., Bard, A.J., (2012) Acc. Chem. Res., 45 (11), pp. 1844-1853; Reid, E.F., Cook, V.C., Wilson, D.J., Hogan, C.F., (2013) Chem. Eur J., 19 (47), pp. 15907-15917; Richter, M.M., (2004) Chem. Rev., 104 (6), pp. 3003-3036; Santhana, K.S., Bard, A.J., (1965) J. Am. Chem. Soc., 87 (1), p. 139; Santra, P.K., Kamat, P.V., (2012) J. Am. Chem. Soc., 134 (5), pp. 2508-2511; Shao, K., Wang, B., Ye, S., Zuo, Y., Wu, L., Li, Q., Lu, Z., Han, H., (2016) Anal. Chem., 88 (16), pp. 8179-8187; Shi, X., Yang, J., Salvador, J.R., Chi, M.F., Cho, J.Y., Wang, H., Bai, S.Q., Chen, L.D., (2011) J. Am. Chem. Soc., 133 (20), pp. 7837-7846; Swanick, K.N., Hesari, M., Workentin, M.S., Ding, Z., (2012) J. Am. Chem. Soc., 134 (37), pp. 15205-15208; Tan, X., Zhang, B., Zhou, J., Zou, G.Z., (2017) ChemElectroChem, 4 (7), pp. 1714-1718; Wang, F., Lin, J., Zhao, T.B., Hu, D.D., Wu, T., Liu, Y., (2016) J. Am. Chem. Soc., 138 (24), pp. 7718-7724; Wang, J., Han, H., Jiang, X., Huang, L., Chen, L., Li, N., (2012) Anal. Chem., 84 (11), pp. 4893-4899; Wang, J., Jiang, X., Han, H., (2016) Biosens. Bioelectron., 82, pp. 26-31; Wang, J., Xia, T., Wang, L., Zheng, X.S., Qi, Z.M., Gao, C., Zhu, J.F., Xiong, Y.J., (2018) Angew. Chem. Int. Ed., 57 (50), pp. 16447-16451; Wang, T., Ma, H., Padelford, J.W., Lobo, E., Tran, M.T., Zhao, F., Fang, N., Wang, G., (2018) Electrochim. Acta, 282, pp. 369-376; Wang, T., Padelford, J.W., Ma, H., Gubitosi-Raspino, M.F., Wang, G., (2017) ChemElectroChem, 4 (7), pp. 1697-1701; Wang, T., Wang, D., Padelford, J.W., Jiang, J., Wang, G., (2016) J. Am. Chem. Soc., 138 (20), pp. 6380-6383; Wen, W., Huang, J.Y., Bao, T., Zhou, J., Xia, H.X., Zhang, X.H., Wang, S.F., Zhao, Y.D., (2016) Biosens. Bioelectron., 83, pp. 142-148; Wu, P., Hou, X.D., Xu, J.J., Chen, H.Y., (2014) Chem. Rev., 114 (21), pp. 11027-11059; Xie, R.G., Peng, X.G., (2009) J. Am. Chem. Soc., 131 (30), pp. 10645-10651; Yuan, L., Lin, W., Zheng, K., He, L., Huang, W., (2013) Chem. Soc. Rev., 42 (2), pp. 622-661; Yuan, Y.L., Zhang, L., Wang, H.J., Chai, Y.Q., Yuan, R., (2018) Anal. Chim. Acta, 1001, pp. 112-118; Zhang, B., Zhang, F., Zhang, P., Shen, D., Gao, X., Zou, G., (2019) Anal. Chem., 91 (5), pp. 3754-3758; Zhang, F., He, Y.P., Fu, K.N., Fu, L., Zhang, B., Wang, H.S., Zou, G.Z., (2018) Biosens. Bioelectron., 115, pp. 77-82; Zhang, X., Zhang, B., Miao, W.J., Zou, G.Z., (2016) Anal. Chem., 88 (10), pp. 5482-5488; Zhou, J., He, Y.P., Zhang, B., Sun, Q.L., Zou, G.Z., (2017) Talanta, 165, pp. 117-121; Zhou, J., Nie, L., Zhang, B., Zou, G.Z., (2018) Anal. Chem., 90 (21), pp. 12361-12365; Zou, G.Z., Tan, X., Long, X.Y., He, Y.P., Miao, W.J., (2017) Anal. Chem., 89 (23), pp. 13024-13029 [format_title_en_publication_en_pub_year] => b5bf210b39fa6123cd87672f0befbf7b-1626319676 [abstract_en] => Novel optical labels for biosensing in near-infrared (NIR) region (especially between 800 and 900 nm) are arousing much attention for higher penetrating capability, less scattering and lowered autofluorescent background. Herein, a water-soluble electrochemiluminophore with effective electrochemiluminescence (ECL) around 815 nm is developed via doping dual-stabilizers-capped CdTe nanocrystals (NCs) with Co2+ species in a growth-doping way. The Co2+-doped CdTe NCs not only can preserve the highly-passivated surface states of dual-stabilizers-capped CdTe NCs, but also exhibit efficient red-shifted photoluminescence (PL) and ECL into the promising optical NIR window of 800-900 nm. A spectrum-based ultrasensitive NIR ECL immunosensor is consequently fabricated with the Co2+-doped CdTe NCs as tags for the first time, which can selectively and sensitively determine human carcinoembryonic antigen with a wide linearity range from 1 fg/mL to 10 pg/mL and a low limit of detection at 0.2 fg/mL (S/N = 3). This work opens a way to screen novel NIR electrochemiluminophore as well as to modulate the ECL performance of NCs via surface doping and engineering. [scopus_id] => 57207302028;57202136464;57202130521;56922351200;57202240396;57102652800; [from_id] => 76,73 [cauthor_ad] => [Zou, GZ]Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China. [hx_id] => 2378,2371 [classification_pub] => BBIOE [datebase] => Scopus [sys_level_num] => 15_6 [sys_jg_type] => 11,10 [title_en] => Red-shifted electrochemiluminescence of CdTe nanocrystals via Co2+-Doping and its spectral sensing application in near-infrared region [index_keyword] => Antigens; Cadmium telluride; II-VI semiconductors; Immunosensors; Infrared devices; Nanocrystals; Carcinoembryonic antigen; CdTe nanocrystals; CdTe NCs; Electrochemiluminescence; Limit of detection; Near Infrared; Near infrared region; Passivated surface; Red Shift [standard_in] => School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China; Department of Chemistry, Liaocheng University, Liaocheng, 252059, China [volume] => 150 [source_type] => 351 [pub_year] => 2020 [keyword_en] => Electrochemiluminescence; Near-infrared; Co2+-doped CdTe NCs;; Immunosensor; Human carcinoembryonic antigen [article_id] => 810408,814834 [hints] => 0 [publisher] => ELSEVIER ADVANCED TECHNOLOGY [doi] => 10.1016/j.bios.2019.111880 [language] => English [issn] => 0956-5663 [batch] => 3422,3424 [pubmedID] => 31748194 [email] => zouguizheng@sdu.edu.cn [document_No] => 111880 [format_title_en_issn_pub_year] => c7e99ef415b70697536af4d77b53dcef971132626 [publication_iso] => Biosens. Bioelectron. [SYS_TAG] => 3 [hb_type] => 2 [article_dt] => Article [hb_batch] => grant_no [cite_wos] => 0 [check_3Y] => 33 [delivery_No] => KG0MO [format_title] => [author_fn] => Gao, Xuwen; Fu, Kena; Fu, Li; Wang, Huaisheng; Zhang, Bin; Zou, Guizheng [pages] => 7 [publication_29] => BIOSENS BIOELECTRON [researcherID] => Zhang, Bin/H-4942-2014 [eissn] => 1873-4235 [orcID] => Zhang, Bin/0000-0002-1529-6356 [publication_type] => J [get_data] => 2020-03-06 [format_publication_cn] => [keyword_plu] => DUAL-COLOR ELECTROCHEMILUMINESCENCE; ELECTROGENERATED CHEMILUMINESCENCE; QUANTUM DOTS; EFFICIENT ELECTROCHEMILUMINESCENCE; FLUORESCENT-PROBES; IMMUNOASSAY; ELECTROCHEMISTRY; APTASENSOR; STRATEGY; ANTIGEN [fund_ab] => This project is supported by the National Natural Science Foundation of; China (Grant Nos. 21427808, 21375077), and the Fundamental Research; Funds of Shandong University (2018JC017). [format_title_en] => 8f5d8515c441d1e4b5e77867297a83f8-1226712364 [publisher_city] => OXFORD [pub_date] => FEB 15 [cauthor_order] => 6 [reference_No] => 57 [cite_awos] => 0 [wos_No] => WOS:000509635500049 [sys_priority_field] => 73 [format_wos_No] => 3ce361f7054c09b42669271358a12aef894547588 [wos_sub] => Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical;; Electrochemistry; Nanoscience & Nanotechnology [research_area] => Biophysics; Biotechnology & Applied Microbiology; Chemistry;; Electrochemistry; Science & Technology - Other Topics [cauthor_back] => Zou, GZ [check_180] => 33 [publisher_ad] => OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,; OXFORD OX5 1GB, OXON, ENGLAND [format_publication_en] => 1a07e3b34981827aeb11821a0da313f71797155525 [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => biosensorsandbioelectronics [jl_country] => 中国 [jl_keyword_en] => ,co2dopedcdtencs,nearinfrared,humancarcinoembryonicantigen,electrochemiluminescence,immunosensor [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => elsevieradvancedtechnology [author_test] => Array ( [0] => Array ( [sure] => 1 [irmagnum] => 0 [u_index] => 0 [name] => 邹桂征 [irtag] => 0 [t_index] => 0 [person_id] => 26251 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 3 [name] => 傅利 [irtag] => 7 [t_index] => 0 [person_id] => 20761 ) [2] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 张斌 [irtag] => 7 [t_index] => 0 [person_id] => 25314 ) [3] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 张斌 [irtag] => 7 [t_index] => 0 [person_id] => 25315 ) [4] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 张斌 [irtag] => 7 [t_index] => 0 [person_id] => 25312 ) [5] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 5 [name] => 张斌 [sys_author_id] => Array ( [0] => 26251 ) [irtag] => 7 [t_index] => 0 [person_id] => 25313 ) ) [company_id] => 0,169 [author_id] => 25312,25313,25314,25315,26251,20761 [sys_subject_sort] => 0 [college_parent_id] => 169 [company_test] => Array [id] => IQA103ABe-eYmRwwJhsm [tags] => 0 ) [19] => Array ( [cauthor] => Chen, Jiezhi(chen.jiezhi@sdu.edu.cn) [issn] => 0894-6507 [school_id] => 117 [controlled_terms] => Amorphous semiconductors - Annealing - Electronic properties - Femtosecond lasers - Microelectronics - Phosphorus - Semiconductor lasers [batch2] => 15 [hb_batch] => 3418 [ei_No] => 20200608143830 [tag] => 0 [author_en] => Zhan, XP; Su, Y; Fu, Y; Chen, JZ; Xu, HL [sys_level_num] => 15_8 [abstract_en] => Heat effects on femtosecond laser annealing to crystallize doped amorphous Si films are studied. The structural, optical and electronic properties of phosphorus-doped amorphous Si films before and after femtosecond laser treatment are characterized. As the temperature increases from room temperature to 200 degrees C controlled by a hot-stage, the grain size and number of crystalline Si on the films are gradually enhanced, which is confirmed by comparing the surface morphologies and analyzing the Raman spectrum. It is demonstrated that heating the substrate can promote the phase transformation of amorphous Si and the activation of phosphorus dopants, yielding a significant improvement in the light-trapping capability and carrier conductivity of the laser-annealed films. By using the proposed heat-assisted femtosecond laser annealing technique, polycrystallized phosphorus-doped amorphous Si films are produced showing highly absorptive and conductive, which might be further applied in photovoltaic and microelectronic devices. [format_doi] => 370dcab947356c771d34bc6e7c3b4f161527379523 [sys_update_time] => 2020-03-13 09:40:17 [cauthor_back] => Chen, Jiezhi@@@Chen, JZ@@@Xu, HL [format_title_en_publication_en_pub_year] => 7f80747a437165b9cef1970f7767f00b1922257029 [classification_No] => 537.1 Heat Treatment Processes - 549.3 Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals - 712.1 Semiconducting Materials - 744.4.1 Semiconductor Lasers - 804 Chemical Products Generally [document_No] => 8897683 [main_eword] => Amorphous silicon [format_ei_No] => 1453b0cb1e58b8ef12c07d0758d5c38f-431486741 [from_id] => 76,74,73 [issue] => 1 [email] => chen.jiezhi@sdu.edu.cn; huailiang@jlu.edu.cn [classification_pub] => ITSME [datebase] => Scopus [numerical_index] => Temperature 4.73e+02K [sys_jg_type] => 11 [format_issn_issue_page_pub_year] => d4ce3cc5405cecd70a1ff1bb56742d47397244197 [title_en] => Phosphorous-Doped alpha-Si Film Crystallization Using Heat-Assisted Femtosecond Laser Annealing [volume] => 33 [author_fn] => Zhan, Xuepeng; Su, Yue; Fu, Yao; Chen, Jiezhi; Xu, Huailiang [pub_year] => 2020 [eissn] => 1558-2345 [pub_date] => FEB [begin_page] => 116 [hints] => 0 [publisher] => IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC [doi] => 10.1109/TSM.2019.2953365 [language] => English [source_type] => 351 [reference_No] => 37 [batch] => 3422,3418,3424 [publication_en] => IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING [hx_id] => 2376,2378,2371 [author_in] => [Zhan, Xuepeng; Chen, Jiezhi] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China.@@@ [Su, Yue; Fu, Yao; Xu, Huailiang] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China.@@@ [Xu, Huailiang] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China. [format_title_en_issn_pub_year] => 7f36d7cae772666be048474addeecbbe-1479578601 [article_id] => 808836,813793,814682 [cauthor_order] => 4,4,5 [uncontrolled_terms] => Amorphous Si films - Carrier conductivity - Femtosecond laser annealing - Laser annealing - Micro-electronic devices - Optical and electronic properties - Phosphorus-doped - Temperature increase [SYS_TAG] => 3 [end_page] => 120 [page] => 116-120 [hb_type] => 2 [article_dt] => Article [fund_No] => China Key Research and Development Program [2016YFA0201800]; National; Natural Science Foundation of ChinaNational Natural Science Foundation; of China [61625501, 61427816]; Fundamental Research Funds of Shandong; University; Open Fund of the State Key Laboratory of High Field Laser; Physics (SIOM) [index_keyword] => Amorphous semiconductors; Annealing; Electronic properties; Femtosecond lasers; Microelectronics; Phosphorus; Semiconductor lasers; Amorphous Si films; Carrier conductivity; Femtosecond laser annealing; Laser annealing; Micro-electronic devices; Optical and electronic properties; Phosphorus-doped; Temperature increase; Amorphous silicon [format_title] => [reference] => Chen, X., Jia, B., Zhang, Y., Gu, M., Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets (2013) Light Sci. Appl., 2, p. e92. , Aug; Lee, K.-T., Lee, J.Y., Seo, S., Guo, L.J., Colored ultrathin hybrid photovoltaics with high quantum efficiency (2014) Light Sci. Appl., 3, p. e215. , Oct; Dassow, R., Köhler, J.R., Grauvogl, M., Bergmann, R.B., Werner, J., Laser-crystallized polycrystalline silicon on glass for photovoltaic applications (1999) Solid State Phenom., 67-68, pp. 193-198. , Apr; Matsuyama, T., High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method (1996) J. Non Cryst. Solids, 198-200, pp. 940-944. , May; Bellanger, P., Polycrystalline silicon films obtained by crystallization of amorphous silicon on aluminium based substrates for photovoltaic applications (2017) Thin Solid Films, 636, pp. 150-157. , Aug; Stuckelberger, M., Biron, R., Wyrsch, N., Haug, F.J., Ballif, C., Review: Progress in solar cells from hydrogenated amorphous silicon (2017) Renew. Sustain. Energy Rev., 76, pp. 1497-1523. , Sep; Sun, Z., Gupta, M.C., Laser processing of silicon for photovoltaics and structural phase transformation (2018) Appl. Surface Sci., 456, pp. 342-350. , Oct; Liu, J., Liu, B., Zhang, X., Guo, X., Liu, S., Improvement of crystallinity for poly-Si thin film by negative substrate bias at low temperature (2017) Thin Solid Films, 629, pp. 90-96. , May; Lin, Y.-T., Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors (2006) Appl. Phys. Lett., 88. , May; Zhang, T., Pulsed KrF excimer laser dopant activation in nanocrystal silicon in a silicon dioxide matrix (2016) Appl. Phys. Lett., 108. , Feb; Li, R., Lee, S.J., Hong, M.H., Chi, D.Z., Kwong, D.L., Pt-germanide formed by laser annealing and its application for Schottky source/drain metal-oxide-semiconductor field-effect transistor integrated with TaN/Chemical vapor deposition HfO2/Ge Gate Stack (2008) Jpn. J. Appl. Phys., 47, pp. 2548-2550. , Apr; Huang, J., Germanium n+/ p junction formation by laser thermal process (2005) Appl. Phys. Lett., 87. , Oct; Rousse, A., Non-thermal melting in semiconductors measured at femtosecond resolution (2001) Nature, 410, pp. 65-68. , Mar; Sokolowski-Tinten, K., Biakowski, J., Linde, D.V.D., Ultrafast laser-induced order-disorder transitions in semiconductors (1995) Phys. Rev. B, Condens. Matter, 51. , May; Shieh, J.-M., Chen, Z.-H., Dai, B.-T., Wang, Y.-C., Zaitsev, A., Pan, C.-L., Near-infrared femtosecond laser-induced crystallization of amorphous silicon (2004) Appl. Phys. Lett., 85 (7), pp. 1232-1234; Serien, D., Sugioka, K., Fabrication of three-dimensional proteinaceous micro-and nano-structures by femtosecond laser cross-linking (2018) Opto Electron. Adv., 1 (4); Sundaram, S.K., Mazur, E., Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses (2001) Nat. Mater., 1, pp. 217-224. , Dec; Liang, P.H., Fang, C.J., Jiang, D.S., Wagner, P., Ley, L., Ultrashort laser-pulse annealing of hydrogenated amorphous silicon (1981) Appl. Phys. A, Solids Surf., 26 (1), pp. 39-43; Zhan, X.-P., Hou, M.-Y., Ma, F.-S., Su, Y., Chen, J.-Z., Xu, H.-L., Room temperature crystallization of amorphous silicon film by ultrashort femtosecond laser pulses (2019) Opt. Laser Technol., 112, pp. 363-367. , Apr; Miura, H., Okamoto, N., Crystallization-induced stress in phosphorus-doped amorphous silicon thin films (1994) J. Appl. Phys., 75 (9), pp. 4747-4749; Jiang, Y.-L., Chen, C.-L., Lin, C.-W., Huang, S.-F., Rapid and efficient recrystallization and activation of implanted phosphorus doping in laserannealed polysilicon by rapid energy transfer annealing (2003) Jpn. J. Appl. Phys., 42 (12 B), pp. 1498-1500; Beserman, R., Khait, Y.L., Chack, A., Weil, R., Beyer, W., Comparison between the crystallization processes by laser and furnace annealing of pure and doped a-Si: H (2002) J. Non Cryst. Solids, 299-302, pp. 736-740. , Apr; Xu, J., Xua, J., Lu, P., Shan, D., Li, W., Chen, K., Charge transfer of single laser crystallized intrinsic and phosphorus-doped Si-nanocrystals visualized by Kelvin probe force microscopy (2014) J. Appl. Phys., 116 (13); Wang, M., Chen, K., He, L., Li, W., Xu, J., Huang, X., Green electro- And photoluminescence from nanocrystalline Si film prepared by continuous wave Ar+ laser annealing of heavily phosphorus doped hydrogenated amorphous silicon film (1998) Appl. Phys. Lett., 73 (1), pp. 105-107; Jin, J., Yuan, Z., Huang, L., Chen, S., Shi, W., Cao, Z., Lou, Q., Laser crystallization of amorphous silicon films investigated by Raman spectroscopy and atomic force microscopy (2010) Appl. Surface Sci., 256 (11), pp. 3453-3458; Lin, H.K., Huang, U.G., Hong, S.Z., Effects of laser parameters on optoelectronic properties of polycrystalline silicon films prepared by two-step annealing process (2017) Int. J. Adv. Manuf. Technol., 93 (9-12), pp. 3159-3163; Rybalko, P.D., Femtosecond laser crystallization of boron-doped amorphous hydrogenated silicon films (2016) J. Nano Electron. Phys., 8 (3); Izawa, Y., Tokita, S., Fujita, M., Norimatsu, T., Izawa, Y., Ultra fast melting process in femtosecond laser crystallization of thin a-Si layer (2009) Appl. Surface Sci., 255 (4), pp. 9764-9769; Paillard, V., Puech, P., Laguna, M.A., Carles, R., Kohn, B., Huisken, F., Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals (1999) J. Appl. Phys., 86 (4), pp. 1921-1924; Arora, A.K., Rajalakshmi, M., Ravindran, T.R., Phonon confinement in nanostructured materials (2004) Encyclopedia of Nanoscience and Nanotechnology, 8, pp. 499-512. , Los Angeles, CA, USA: Amer. Sci; Smit, C., Swaaij, R.A.C.M.M.V., Donker, H., Petit, A.M.H.N., Kessels, W.M.M., De Sanden, M.C.M.V., Determining the material structure of microcrystalline silicon from Raman spectra (2003) J. Appl. Phys., 94 (5), pp. 3582-3588; Nayak, B.K., Gupta, M.C., Femtosecond-laser-inducedcrystallization and simultaneous formation of light trapping microstructures in thin a-Si: H films (2007) Appl. Phys. A, Solids Surf., 89 (3), pp. 663-666; Zhan, X., Remote and rapid micromachining of broadband lowreflectivity black silicon surfaces by femtosecond laser filaments (2017) Opt. Lett., 42 (3), pp. 510-513; Wang, H., Kongsuwan, P., Satoh, G., Yao, Y.L., Femtosecond laserinduced simultaneous surface texturing and crystallization of a-Si: H thin film: Absorption and crystallinity (2012) J. Manuf. Sci. Eng., 134 (3); Phillips, K.C., Gandhi, H.H., Mazur, E., Sundaram, S.K., Ultrafast laser processing of materials: A review (2015) Adv. Opt. Photon., 7 (4), pp. 684-712; Nayak, B.K., Iyengar, V.V., Gupta, M.C., Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures (2011) Prog. Photovolt. Res. Appl., 19 (6), pp. 631-639; Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., Hotta, K., High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film (1989) IEEE Trans. Electron Devices, 36 (12), pp. 2868-2872. , Dec [scopus_id] => 55571289200;57200133881;57200134755;57205067688;7407449531; [format_scopus_No] => 5a16079812a0fd519a7409ef5bda29ef1258997492 [keyword_en] => Amorphous semiconductors; laser annealing [format_publication_cn] => [publication_iso] => IEEE Trans. Semicond. Manuf. [format_title_en] => 3cab99456d5aca51b9328e58676fba68-1717274338 [sys_priority_field] => 73 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079065799&doi=10.1109%2fTSM.2019.2953365&partnerID=40&md5=16adde33d26ddccd20b4b201adb53dab [standard_in] => School of Information Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China; State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China [scopus_No] => 2-s2.0-85079065799 [format_publication_en] => 135f3f9b52b3a7c00f0b6a35f9f50151-1136285432 [cite_wos] => 0 [check_3Y] => 0 [delivery_No] => KI5WA [cauthor_ad] => [Chen, JZ]Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China@@@[Xu, HL]Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China. [pages] => 5 [publication_29] => IEEE T SEMICONDUCT M [orcID] => chen, jiezhi/0000-0003-2996-1406 [publication_type] => J [get_data] => 2020-03-06 [keyword_plu] => AMORPHOUS-SILICON; POLYCRYSTALLINE SILICON [fund_ab] => This work was supported in part by China Key Research and Development; Program under Grant 2016YFA0201800, in part by the National Natural; Science Foundation of China under Grant 61625501 and Grant 61427816, in; part by the Fundamental Research Funds of Shandong University, and in; part by the Open Fund of the State Key Laboratory of High Field Laser; Physics (SIOM). [publisher_city] => PISCATAWAY [cite_awos] => 0 [wos_No] => WOS:000511419300013 [format_wos_No] => 66a654df92b8379821502d528d627474125866617 [wos_sub] => Engineering, Manufacturing; Engineering, Electrical & Electronic;; Physics, Applied; Physics, Condensed Matter [research_area] => Engineering; Physics [check_180] => 0 [publisher_ad] => 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA [jl_language] => english [jl_article_dt] => 期刊论文 [jl_publication_en] => ieeetransactionsonsemiconductormanufacturing [jl_country] => 中国 [jl_keyword_en] => laserannealing,amorphoussemiconductors [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => ieeeinstelectricalelectronicsengineersinc [company_id] => 0,142 [author_id] => 25294,20264 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 4 [name] => 陈杰智 [irtag] => 7 [t_index] => 4 [person_id] => 20264 ) [1] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 1 [name] => 詹学鹏 [irtag] => 7 [t_index] => 0 [person_id] => 25294 ) ) [sys_subject_sort] => 0 [college_parent_id] => 142 [company_test] => Array [id] => OQA403ABe-eYmRwwBioB [tags] => 0 ) ) 1-->
1. A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria SCOPUS SCIE

作者:Tang, Bai-Lu; Yang, Jie; Chen, Xiu-Lan; Wang, Peng; Zhao, Hui-Lin; Su, Hai-Nan; Li, Chun-Yang; Yu, Yang; Zhong, Shuai; Wang, Lei; Lidbury, Ian; Ding, Haitao; Wang, Min; McMinn, Andrew; Zhang, Xi-Ying; Chen, Yin; Zhang, Yu-Zhong

作者机构:[Tang, Bai-Lu; Yang, Jie; Chen, Xiu-Lan; Wang, Peng; Zhao, Hui-Lin; Su, Hai-Nan; Yu, Yang; Zhong, Shuai; Wang, Lei; Zhang, Xi-Ying; Zhang, Yu-Zhong] Shandong Univ, Marine Biotechnol Res Ctr, State Key Lab Microbial Technol, Qingdao 266237, Peoples R China.; [Wang, Peng; Li, Chun-Yang; Wang, Min; McMinn, Andrew; Chen, Yin; Zhang, Yu-Zhong] Ocean Univ China, Inst Adv Ocean Study, Coll Marine Life Sci, Qingdao 266003, Peoples R China.; [Li, Chun-Yang; Zhang, Yu-Zhong] Pilot Natl Lab Marine Sci & Technol Qingdao, Lab Marine Biol & Biotechnol, Qingdao 266373, Peoples R China.; [Lidbury, Ian; Chen, Yin] Univ Warwick, Sch Life Sci, Coventry, W Midlands, England.; [Ding, Haitao] Polar Res Inst China, SOA Key Lab Polar Sci, Shanghai 200136, Peoples R China.; [McMinn, Andrew] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia.

来源:NATURE COMMUNICATIONS,2020,Vol.11,Issue.1

资源类型:期刊论文

WOS:000512534100006

2. Triple networks hydrogel with high strength made by chemical and physical cross-linking EI SCOPUS SCIE

作者:Wang, Xiangong; Zhao, Fang; Qin, Xuping; Feng, Shengyu

作者机构:[Wang, Xiangong; Zhao, Fang; Qin, Xuping; Feng, Shengyu] Shandong Univ, Sch Chem & Chem Engn, Key Lab Special Funct Aggregated Mat, Minist Educ,Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China.

来源:COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS,2020,Vol.589

资源类型:期刊论文

WOS:000513861400028

3. Mutations in the HRB linker of human parainfluenza virus type 3 fusion protein reveal its importance for fusion activity SCOPUS SCIE

作者:Liu, Ying; Xie, Wenyan; Chi, Miaomiao; Wen, Hongling; Zhao, Li; Song, Yanyan; Liu, Na; Chi, Lianli; Wang, Zhiyu

作者机构:[Liu, Ying; Chi, Miaomiao; Wen, Hongling; Zhao, Li; Song, Yanyan; Liu, Na; Wang, Zhiyu] Shandong Univ, Dept Virol, Sch Publ Hlth, 44 Wenhua Xi Rd, Jinan 250012, Shandong, Peoples R China.; [Xie, Wenyan] Shandong Univ, Dept Lab Med, Shandong Prov Qianfoshan Hosp, Jinan 250014, Shandong, Peoples R China.; [Chi, Lianli] Shandong Univ, State Key Lab Microbial Technol, Natl Glycoengn Res Ctr, Jinan 250100, Shandong, Peoples R China.; [Wang, Zhiyu] Shandong Univ, Key Lab Expt Teratol, Minist Educ, Jinan 250012, Shandong, Peoples R China.

来源:VIRUS RESEARCH,2020,Vol.275

资源类型:期刊论文

WOS:000500373700002

4. Well-dispersed SnO2 nanocrystals on N-doped carbon nanowires as efficient electrocatalysts for carbon dioxide reduction SCOPUS SCIE

作者:Zhang, Baohua; Sun, Lizhen; Wang, Yueqing; Chen, Si; Zhang, Jintao

作者机构:[Zhang, Baohua; Wang, Yueqing; Zhang, Jintao] Shandong Univ, Shenzhen Res Inst, Virtural Univ Pk, Shenzhen 518057, Guangdong, Peoples R China.; [Zhang, Baohua; Wang, Yueqing; Chen, Si; Zhang, Jintao] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem State Educ Minis, Jinan 250100, Shandong, Peoples R China.; [Sun, Lizhen] Shandong Inst Food & Drug Control, Jinan 250101, Shandong, Peoples R China.

来源:JOURNAL OF ENERGY CHEMISTRY,2020,Vol.41,7-14

资源类型:期刊论文

WOS:000495924600003

5. Activated STAT3 Could Reduce Survival in Patients with Esophageal Squamous Cell Carcinoma by Up-regulating VEGF and Cyclin D1 Expression SCOPUS SCIE

作者:Zhang, Nan; Zhang, Min; Wang, Zhou; Gao, Wei; Sun, Zhi-Gang

作者机构:[Zhang, Nan] Shandong Univ, Jinan Cent Hosp, Dept Oncol, Jinan 250013, Peoples R China.; [Zhang, Nan; Zhang, Min; Gao, Wei; Sun, Zhi-Gang] Shandong First Med Univ, Jinan Cent Hosp, Jinan 250013, Peoples R China.; [Zhang, Min] Shandong Univ, Jinan Cent Hosp, Dept Dermatol, Jinan 250013, Peoples R China.; [Wang, Zhou] Shandong Univ, Prov Hosp, Dept Thorac Surg, Jinan 250021, Peoples R China.; [Gao, Wei] Shandong Univ, Jinan Cent Hosp, Dept Pathol, Jinan 250013, Peoples R China.; [Sun, Zhi-Gang] Shandong Univ, Jinan Cent Hosp, Dept Thorac Surg, Jinan 250013, Peoples R China.

来源:JOURNAL OF CANCER,2020,Vol.11,Issue.7,1859-1868

资源类型:期刊论文

WOS:000512895100021

6. Preparation of 3D network CNTs-modified nickel foam with enhanced microwave absorptivity and application potential in wastewater treatment EI SCOPUS SCIE

作者:Wang, Wenlong; Li, Zhe; Zhang, Meng; Sun, Chenggong

作者机构:[Wang, Wenlong; Li, Zhe; Zhang, Meng] Shandong Univ, Natl Engn Lab Coal Fired Pollutants Emiss Reduct, Jingshi Rd 17923, Jinan 250061, Shandong, Peoples R China.; [Sun, Chenggong] Univ Nottingham, Fac Engn, Univ Pk, Nottingham NG7 2RD, England.

来源:SCIENCE OF THE TOTAL ENVIRONMENT,2020,Vol.702

资源类型:期刊论文

WOS:000500590700060

7. Cracking mechanism and spectral properties of Er,Yb:CaGdAlO4 crystals grown by the LHPG method EI SCOPUS SCIE

作者:Zhang, Na; Wang, Haoyuan; Yin, Yuqing; Wang, Tao; Jia, Zhitai; Zhang, Jian; Hu, Qiangqiang; Lin, Na; Fu, Xiuwei; Tao, Xutang

作者机构:[Zhang, Na; Wang, Haoyuan; Yin, Yuqing; Wang, Tao; Jia, Zhitai; Zhang, Jian; Hu, Qiangqiang; Lin, Na; Fu, Xiuwei; Tao, Xutang] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.; [Jia, Zhitai; Zhang, Jian; Tao, Xutang] Minist Educ, Key Lab Funct Crystal Mat & Device, Jinan 250100, Peoples R China.

来源:CRYSTENGCOMM,2020,Vol.22,Issue.5,955-960

资源类型:期刊论文

WOS:000513784200009

8. Optical fringe patterns filtering based on multi-stage convolution neural network EI SCOPUS SCIE

作者:Lin, Bowen; Fu, Shujun; Zhang, Caiming; Wang, Fengling; Li, Yuliang

作者机构:[Lin, Bowen; Fu, Shujun] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.; [Wang, Fengling] Shandong Univ Arts, Coll Arts Management, Jinan 250300, Shandong, Peoples R China.; [Zhang, Caiming] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China.; [Li, Yuliang] Shandong Univ, Dept Intervent Med, Hosp 2, Jinan 250033, Shandong, Peoples R China.

来源:OPTICS AND LASERS IN ENGINEERING,2020,Vol.126

资源类型:期刊论文

WOS:000503100500030

9. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo SCOPUS SCIE

作者:Cui, Ying-Jie; Ma, Chen-Chen; Zhang, Cheng-Mei; Tang, Long-Qian; Liu, Zhao-Peng

作者机构:[Cui, Ying-Jie; Zhang, Cheng-Mei; Tang, Long-Qian; Liu, Zhao-Peng] Shandong Univ, Sch Pharmaceut Sci, Minist Educ, Dept Med Chem,Key Lab Chem Biol, Jinan 250012, Peoples R China.; [Ma, Chen-Chen] Shandong Univ Tradit Chinese Med, Affiliated Hosp, Cent Lab, Jinan 250012, Peoples R China.

来源:EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY,2020,Vol.187

资源类型:期刊论文

WOS:000510525000037

10. Utilization of wax residue as compatibilizer for asphalt with ground tire rubber/recycled polyethylene blends EI SCOPUS SCIE

作者:Liang, Ming; Sun, Changjun; Yao, Zhanyong; Jiang, Hongguang; Zhang, Jizhe; Ren, Shisong

作者机构:[Liang, Ming; Sun, Changjun; Yao, Zhanyong; Jiang, Hongguang; Zhang, Jizhe] Shandong Univ, Sch Qilu Transportat, Jinan 250002, Shandong, Peoples R China.; [Ren, Shisong] China Univ Petr, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R China.

来源:CONSTRUCTION AND BUILDING MATERIALS,2020,Vol.230

资源类型:期刊论文

WOS:000504367400027

11. Defect Engineering of MoS2 for Room-Temperature Terahertz Photodetection SCOPUS SCIE

作者:Xie, Ying; Liang, Fei; Chi, Shumeng; Wang, Dong; Zhong, Kai; Yu, Haohai; Zhang, Huaijin; Chen, Yanxue; Wang, Jiyang

作者机构:[Xie, Ying; Liang, Fei; Chi, Shumeng; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.; [Xie, Ying; Liang, Fei; Chi, Shumeng; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang] Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China.; [Wang, Dong; Chen, Yanxue] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China.; [Zhong, Kai] Tianjin Univ, Minist Educ, Key Lab Optoelect Informat Technol, Tianjin 300072, Peoples R China.

来源:ACS APPLIED MATERIALS & INTERFACES,2020,Vol.12,Issue.6,7351-7357

资源类型:期刊论文

WOS:000514256400056

12. 17.9 W continuous-wave self-frequency-doubled Nd:GdCOB laser EI SCOPUS SCIE

作者:Du, Jinheng; Wang, Jiyang; Yu, Haohai; Zhang, Huaijin

作者机构:[Du, Jinheng; Wang, Jiyang; Yu, Haohai; Zhang, Huaijin] Shandong Univ, State Key Lab Crystal Mat, 27 Shanda Nanlu, Jinan 250100, Peoples R China.; [Du, Jinheng; Wang, Jiyang; Yu, Haohai; Zhang, Huaijin] Shandong Univ, Inst Crystal Mat, 27 Shanda Nanlu, Jinan 250100, Peoples R China.

来源:OPTICS LETTERS,2020,Vol.45,Issue.2,327-330

资源类型:期刊论文

WOS:000510865100018

13. Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser EI SCOPUS SCIE

作者:Tan, Wei; Ma, Weiguang; Liu, Zhaojun; Yan, Xiaojuan; Qiu, Xiaodong; Zhang, Xingyu

作者机构:[Tan, Wei; Liu, Zhaojun; Zhang, Xingyu] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Shandong, Peoples R China.; [Tan, Wei; Liu, Zhaojun; Zhang, Xingyu] Shandong Univ, Shandong Prov Key Lab Laser Technol & Applicat, Qingdao 266237, Shandong, Peoples R China.; [Ma, Weiguang; Yan, Xiaojuan] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China.; [Ma, Weiguang; Yan, Xiaojuan] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China.; [Qiu, Xiaodong] Xiamen Univ, Dept Phys, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Fujian, Peoples R China.; [Qiu, Xiaodong] Xiamen Univ, Jiujiang Res Inst, Xiamen 361005, Fujian, Peoples R China.

来源:OPTICS COMMUNICATIONS,2020,Vol.458

资源类型:期刊论文

WOS:000502796100034

14. Reactive Molecular Dynamics on the Oxidation of H-Si(100) Surface: Effect of Humidity and Temperature SCOPUS SCIE

作者:Yuan, Shideng; Wang, Xueyu; Zhang, Heng; Yuan, Shiling

作者机构:[Yuan, Shideng; Wang, Xueyu; Zhang, Heng; Yuan, Shiling] Shandong Univ, Key Lab Colloid & Interface Chem, Jinan 250199, Peoples R China.

来源:JOURNAL OF PHYSICAL CHEMISTRY C,2020,Vol.124,Issue.3,1932-1940

资源类型:期刊论文

WOS:000509438600019

15. Redistributed Pulsewidth Modulation of MMC Battery Energy Storage System Under Submodule Fault Condition EI SCOPUS SCIE

作者:Gao, Feng; Gu, Xin; Ma, Zhan; Zhang, Chenghui

作者机构:[Gao, Feng; Gu, Xin; Ma, Zhan] Shandong Univ, Minist Educ, Key Lab Power Syst Intelligent Dispatch & Control, Jinan 250061, Peoples R China.; [Zhang, Chenghui] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China.

来源:IEEE TRANSACTIONS ON POWER ELECTRONICS,2020,Vol.35,Issue.3,2284-2294

WOS被引数:1

资源类型:期刊论文

WOS:000507286000008

16. Androgen Receptor (AR)-TLR4 Crosstalk Mediates Gender Disparities in Hepatocellular Carcinoma Incidence and Progression SCOPUS SCIE

作者:Han, Qiuju; Yang, Dan; Yin, Chunlai; Zhang, Jian

作者机构:[Han, Qiuju; Yang, Dan; Yin, Chunlai; Zhang, Jian] Shandong Univ, Sch Pharmaceut Sci, Inst Immunopharmaceut Sci, Jinan 250012, Shandong, Peoples R China.

来源:JOURNAL OF CANCER,2020,Vol.11,Issue.5,1094-1103

资源类型:期刊论文

WOS:000502829400011

17. MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells EI SCOPUS SCIE

作者:Zhang, Ya-Nan; Li, Bo; Fu, Lin; Li, Qun; Yin, Long-Wei

作者机构:[Zhang, Ya-Nan; Li, Qun] Taishan Univ, Coll Chem & Chem Engn, Tai An 271021, Shandong, Peoples R China.; [Zhang, Ya-Nan; Li, Bo; Fu, Lin; Yin, Long-Wei] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China.

来源:ELECTROCHIMICA ACTA,2020,Vol.330

资源类型:期刊论文

WOS:000501468400062

18. Automatic Segmentation and Measurement on Knee Computerized Tomography Images for Patellar Dislocation Diagnosis SCOPUS SCIE

作者:Sun, Limin; Kong, Qi; Huang, Yan; Yang, Jiushan; Wang, Shaoshan; Zou, Ruiqi; Yin, Yilong; Peng, Jingliang

作者机构:[Sun, Limin; Huang, Yan; Yin, Yilong; Peng, Jingliang] Shandong Univ, Sch Software, Jinan 250101, Shandong, Peoples R China.; [Kong, Qi] State Grid Anhui Elect Power Co, Hefei 230061, Anhui, Peoples R China.; [Yang, Jiushan; Wang, Shaoshan; Zou, Ruiqi] Shandong Univ Tradit Chinese Med, Affiliated Hosp 1, Jinan 250014, Shandong, Peoples R China.

来源:COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE,2020,Vol.2020

资源类型:期刊论文

WOS:000514600200001

19. Red-shifted electrochemiluminescence of CdTe nanocrystals via Co2+-Doping and its spectral sensing application in near-infrared region SCOPUS SCIE

作者:Gao, Xuwen; Fu, Kena; Fu, Li; Wang, Huaisheng; Zhang, Bin; Zou, Guizheng

作者机构:[Gao, Xuwen; Fu, Kena; Fu, Li; Zhang, Bin; Zou, Guizheng] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China.; [Wang, Huaisheng] Liaocheng Univ, Dept Chem, Liaocheng 252059, Shandong, Peoples R China.

来源:BIOSENSORS & BIOELECTRONICS,2020,Vol.150

资源类型:期刊论文

WOS:000509635500049

20. Phosphorous-Doped alpha-Si Film Crystallization Using Heat-Assisted Femtosecond Laser Annealing EI SCOPUS SCIE

作者:Zhan, Xuepeng; Su, Yue; Fu, Yao; Chen, Jiezhi; Xu, Huailiang

作者机构:[Zhan, Xuepeng; Chen, Jiezhi] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China.; [Su, Yue; Fu, Yao; Xu, Huailiang] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China.; [Xu, Huailiang] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China.

来源:IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING,2020,Vol.33,Issue.1,116-120

资源类型:期刊论文

WOS:000511419300013

共 2,844 页, 56,879 条记录

TOP