标题:A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability
作者:Sun, Yan; Li, Xinya; Liang, Xia; Zhang, Cevin
作者机构:[Sun, Yan; Liang, Xia] Shandong Univ Finance & Econ, Sch Management Sci & Engn, Jinan 250014, Shandong, Peoples R China.; [Li, Xinya] Shandong TV Un 更多
通讯作者:Sun, Y;Liang, X
通讯作者地址:[Sun, Y; Liang, X]Shandong Univ Finance & Econ, Sch Management Sci & Engn, Jinan 250014, Shandong, Peoples R China.
来源:SUSTAINABILITY
出版年:2019
卷:11
期:9
DOI:10.3390/su11092577
关键词:hazardous materials routing; road-rail multimodal transportation;; bi-objective optimization; uncertainty; credibilistic chance-constrained; programming; carbon dioxide emissions
摘要:Hazardous materials transportation involves extensive risk and cannot be avoided in practice. An advanced routing, however, can help to reduce the risk by planning the best transportation routes for hazardous materials that can make effective tradeoffs between the risk objective and the economic objective. In this study, we explore the hazardous materials routing problem in the road-rail multimodal transportation network with a hub-and-spoke structure, in which the risk is measured by the multiplication of population exposure and the associated volume of hazardous materials, and minimizing the total risk of all the transportation orders of hazardous materials is set as the risk objective. It is difficult to estimate the population exposure exactly during the routing decision-making process, which results in its uncertainty. In this study, we formulate the uncertain population exposure from a fuzzy programming perspective by using triangular fuzzy numbers. Moreover, the carbon dioxide emission constraint is formulated to realize the sustainable transportation of hazardous materials. To optimize the problem under the above framework, we first establish a bi-objective fuzzy mixed integer nonlinear programming model, and then develop a three-stage exact solution strategy that the combines fuzzy credibilistic chance constraint, linearization technique, and the normalized weighting method. Finally, a computational experiment is carried out to verify the feasibility of the proposed method in dealing with the problem. The experimental results indicate that tradeoffs between the two conflicting objectives can be effectively made by using the Pareto frontier to the hazardous materials routing problem. Furthermore, the credibility level and carbon dioxide emission cap significantly influence the hazardous materials routing optimization. Their effects on the optimization result are quantified by using sensitivity analysis, which can draw some useful insights to help decision makers to better organize the hazardous materials road-rail multimodal transportation under uncertainty and sustainability.
收录类别:SCOPUS;SCIE;SSCI
WOS核心被引频次:2
Scopus被引频次:1
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066931944&doi=10.3390%2fsu11092577&partnerID=40&md5=fa988681b2668d50b2880bc13d83280f
TOP