标题:Embedding MnO@Mn3O4Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage
作者:Chu, Yanting ;Guo, Lingyu ;Xi, Baojuan ;Feng, Zhenyu ;Wu, Fangfang ;Lin, Yue ;Liu, Jincheng ;Sun, Di ;Feng, Jinkui ;Qian, Yitai ;Xiong, Shenglin
作者机构:[Chu, Yanting ;Guo, Lingyu ;Xi, Baojuan ;Feng, Zhenyu ;Wu, Fangfang ;Liu, Jincheng ;Sun, Di ;Qian, Yitai ;Xiong, Shenglin ] Key Laboratory of the Coll 更多
通讯作者:Lin, Yue
来源:Advanced Materials
出版年:2018
卷:30
期:6
DOI:10.1002/adma.201704244
摘要:The first synthesis of MnO@Mn3O4nanoparticles embedded in an N-doped porous carbon framework (MnO@Mn3O4/NPCF) through pyrolysis of mixed-valent Mn8clusters is reported. The unique features of MnO@Mn3O4/NPCF are derived from the distinct interfacial structure of the Mn8clusters, implying a new methodological strategy for hybrids. The characteristics of MnO@Mn3O4are determined by conducting high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS) valence-state analyses. Due to the combined advantages of MnO@Mn3O4, the uniform distribution, and the NPCF, MnO@Mn3O4/NPCF displays unprecedented lithium-storage performance (1500 mA h g−1at 0.2 A g−1over 270 cycles). Quantitative analysis reveals that capacitance and diffusion mechanisms account for Li+storage, wherein the former dominates. First-principles calculations highlight the strong affiliation of MnO@Mn3O4and the NPCF, which favor structural stability. Meanwhile, defects of the NPCF decrease the diffusion energy barrier, thus enhancing the Li+pseudocapacitive process, reversible capacity, and long cycling performance. This work presents a new methodology to construct composites for energy storage and conversion.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
收录类别:EI
资源类型:期刊论文
TOP