标题:Surface modification via self-assembling large cations for improved performance and modulated hysteresis of perovskite solar cells
作者:Bu, Tongle; Li, Jing; Huang, Wenchao; Mao, Wenxin; Zheng, Fei; Bi, Pengqing; Hao, Xiaotao; Zhong, Jie; Cheng, Yi-Bing; Huang, Fuzhi
作者机构:[Bu, Tongle; Li, Jing; Zhong, Jie; Cheng, Yi-Bing; Huang, Fuzhi] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, 更多
通讯作者:Huang, Wenchao;Zhong, J;Huang, FZ;Huang, WC
通讯作者地址:[Zhong, J; Huang, FZ]Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China;[Huang, WC]Monash Univ, Dept 更多
来源:JOURNAL OF MATERIALS CHEMISTRY A
出版年:2019
卷:7
期:12
页码:6793-6800
DOI:10.1039/c8ta12284a
摘要:Hybrid organic-inorganic metal halide perovskite solar cells (PSCs) have been regarded as a low-cost, high-efficiency photovoltaic technology; however, the device performance seriously depends on interfacial properties between each contact layer. The interface plays an important role in PSCs as it induces defects, trap states, charge recombination sites etc., which are detrimental to the device performance and stability. Herein, a post-treatment of self-assembling large cations of tert-butylammonium (tBA) on the surface of the perovskite layer is demonstrated as an effective strategy to passivate interface and grain boundary defects and thus improve device performance and stability. In particular, a normal hysteresis is turned into an inverted hysteresis by increasing the amount of tert-butylammonium iodide (tBAI), which can be ascribed to modified interface states. An impressive power conversion efficiency (PCE) over 20% with a significantly suppressed hysteresis is achieved via the careful control of post-treatment conditions, which shows great promise for commercialization in the future.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063162223&doi=10.1039%2fc8ta12284a&partnerID=40&md5=81603e1ba7dcff337419018e0a01ffb0
TOP