标题:Theoretical Elucidation of the Mechanism of Cleavage of the Aromatic C-C Bond in Quinoxaline by a Tungsten-Based Complex [W(PMe3)(4)(eta(2)-CH2PMe2)H]
作者:Liu, Yuxia; Zhang, Dongju; Gao, Jun; Liu, Chengbu
作者机构:[Liu, Yuxia; Zhang, Dongju; Gao, Jun; Liu, Chengbu] Shandong Univ, Inst Theoret Chem, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peo 更多
通讯作者:Zhang, D
通讯作者地址:[Zhang, DJ]Shandong Univ, Inst Theoret Chem, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China.
来源:CHEMISTRY-A EUROPEAN JOURNAL
出版年:2012
卷:18
期:48
页码:15537-15545
DOI:10.1002/chem.201200093
关键词:aromaticity; C?C activation; density functional calculations;; quinoxaline; tungsten
摘要:The aromatic C?C bond cleavage by a tungsten complex reported recently by Sattler and Parkin15 offers fresh opportunities for the functionalization of organic molecules. The mechanism of such a process has not yet been determined, which appeals to computational assistance to understand how the unstrained C?C bond is activated at the molecular level.16,?17 In this work, by performing density functional theory calculations, we studied various possible mechanisms of cleavage of the aromatic C?C bond in quinoxaline (QoxH) by the W-based complex [W(PMe3)4(?2-CH2PMe2)H]. The calculated results show that the mechanism proposed by Sattler and Parkin involves an overall barrier of as high as 42.0 kcal?mol-1 and thus does not seem to be consistent with the experimental observation. Alternatively, an improved mechanism has been presented in detail, which involves the removal and recoordination of a second PMe3 ligand on the tungsten center. In our new mechanism, it is proposed that the C?C cleavage occurs prior to the second C?H bond addition, in contrast to Sattler and Parkins mechanism in which the C?C bond is broken after the second C?H bond addition. We find that the rate-determining step of the reaction is the ring-opening process of the tungsten complex with an activation barrier of 28.5 kcal?mol-1 after the first PMe3 ligand dissociation from the metal center. The mono-hydrido species is located as the global minimum on the potential-energy surface, which is in agreement with the experimental observation for this species. The present theoretical results provide new insight into the mechanism of the remarkable C?C bond cleavage.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:6
Scopus被引频次:5
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869477407&doi=10.1002%2fchem.201200093&partnerID=40&md5=8670046f6b89f17e89b4bc2f3ff6dc16
TOP