标题:Measurement and analysis of water vapor inside optical components for optical fiber H2O sensing system
作者:Wang, Qiang; Chang, Jun; Song, Fujun; Wang, Fupeng; Zhu, Cunguang; Liu, Zhi; Zhang, Sasa; Liu, Xiangzhi
作者机构:[Wang, Qiang; Chang, Jun; Wang, Fupeng; Zhu, Cunguang; Liu, Zhi; Zhang, Sasa] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China.; 更多
通讯作者:Chang, J
通讯作者地址:[Chang, J]Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China.
来源:APPLIED OPTICS
出版年:2013
卷:52
期:26
页码:6445-6451
DOI:10.1364/AO.52.006445
摘要:Water vapor existing inside internal end-face gaps of optical components of an optical fiber H2O sensing system makes it possible to influence the measurement accuracy and stability. The influence principle has been briefly analyzed based on the structure of three main optical components: a distributed feedback laser diode (DFB-LD), a collimator, and a photoelectric diode (PD). With application of a differential technique, the influence of water vapor inside the DFB-LD can be removed. With reasonable recombination of the collimator and the PD in a dual-beam detection system, the influence of water vapor inside the collimator and the PD's end-face gaps has been suppressed from more than 1.57 x 10(-3) to as low as -2.175 x 10(-5) in absorbance. After H2O isolation processing water vapor inside the end-face gaps of the DFB-LD, the collimator, and the PD can be utilized as a reference to design a simple but feasible H2O sensor. As a result, good linearity with an R-2 of 0.9964 has been realized in a concentration range of 39-2110 ppm during an application test, and a long-term test of the designed H2O sensor against the S8000 with a difference of 10 ppm has been achieved. (c) 2013 Optical Society of America
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:7
Scopus被引频次:5
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884599562&doi=10.1364%2fAO.52.006445&partnerID=40&md5=e15454bf37881eafdf7acbc987baa175
TOP