标题:S-Allylmercaptocysteine attenuates Bleomycin-induced pulmonary fibrosis in mice via suppressing TGF-β1/Smad and oxidative stress pathways
作者:Li C.; Sun X.; Li A.; Mo M.; Zhao Z.
作者机构:[Li, C] School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China;[ Sun, X] School of Pharmaceutical 更多
通讯作者:Zhao, Z(zxzhao@sdu.edu.cn)
通讯作者地址:[Zhao, Z] School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, China;
来源:International Immunopharmacology
出版年:2020
卷:79
DOI:10.1016/j.intimp.2019.106110
关键词:Bleomycin; Nrf2; PF; S-allylmercaptocysteine; TGF-β1
摘要:Pulmonary fibrosis (PF) is a disease characterized by diffusing alveolar inflammation and alveolar structural disorders that ultimately lead to pulmonary interstitial fibrosis. S-allylmercaptocysteine (SAMC) as a water-soluble organosulfur garlic derivative exhibits efficient anti-inflammatory and anti-oxidative activities. In this study, we attempted to explore the function of SAMC in inhibiting bleomycin (BLM)-induced pulmonary fibrosis in mice. 0.035 U/g of BLM was intraperitoneally injected into mice twice per week for 4 weeks to induce fibrosis. SAMC (25 and 50 mg/kg) and N-acetylcysteine (NAC, 600 mg/kg) were given to mice for 28 days. The results indicate that SAMC could significantly ameliorate the pathological structure, and decrease inflammatory cell infiltration and pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) in BLM-induced pulmonary fibrosis mice. SAMC showed an anti-fibrosis effect by increasing anti-oxidants like HO-1, GSH and SOD as well as decreasing hydroxyproline (HYP) in BLM-induced mice. Mechanistic studies suggested that SAMC alleviated oxidative stress probably by impacting the Nox4/Nrf2 pathways, and played an anti-fibrosis role with decreasing the expression of α-SMA, collagen III, collagen I by suppressing the TGF-β1/Smad pathway. These findings indicate that SAMC may be partially responsible for the therapeutic effect on PF patients. © 2019 Elsevier B.V.
收录类别:SCOPUS
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076850617&doi=10.1016%2fj.intimp.2019.106110&partnerID=40&md5=4f8eee2074f22c75a3113f7233f30b44
TOP