标题:Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation
作者:Zhang R.
作者机构:[Zhang, R] State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China, Department of Bioengineering 更多
通讯作者:Zhang, R(2455645036@qq.com)
通讯作者地址:[Zhang, R] State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, China;
来源:Applied Microbiology and Biotechnology
出版年:2020
DOI:10.1007/s00253-020-10467-5
关键词:Auxiliary activity family 9; Cello-oligosaccharides; Lignocellulose; Lytic polysaccharide monooxygenases
摘要:Cellulose-degrading auxiliary activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) are known to be widely distributed among filamentous fungi and participate in the degradation of lignocellulose via the oxidative cleavage of celluloses, cello-oligosaccharides, or hemicelluloses. AA9 LPMOs have been reported to have extensive interactions with not only cellulases but also oxidases. The addition of AA9 LPMOs can greatly reduce the amount of cellulase needed for saccharification and increase the yield of glucose. The discovery of AA9 LPMOs has greatly changed our understanding of how fungi degrade cellulose. In this review, apart from summarizing the recent discoveries related to their catalytic reaction, functional diversity, and practical applications, the stability, expression system, and protein engineering of AA9 LPMOs are reviewed for the first time. This review may provide a reference value to further broaden the substrate range of AA9 LPMOs, expand the scope of their practical applications, and realize their customization for industrial utilization.Key Points• The stability and expression system of AA9 LPMOs are reviewed for the first time.• The protein engineering of AA9 LPMOs is systematically summarized for the first time.• The latest research results on the catalytic mechanism of AA9 LPMOs are summarized.• The application of AA9 LPMOs and their relationship with other enzymes are reviewed. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
收录类别:SCOPUS
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079808047&doi=10.1007%2fs00253-020-10467-5&partnerID=40&md5=3da02ac479ab02407f61ab9d482b36f5
TOP