标题:Forest Type Classification Based on Integrated Spectral-Spatial-Temporal Features and Random Forest Algorithm-A Case Study in the Qinling Mountains
作者:Cheng, Kai; Wang, Juanle
作者机构:[Cheng, Kai; Wang, Juanle] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peop 更多
通讯作者:Wang, Juanle;Wang, JL;Wang, JL;Wang, JL
通讯作者地址:[Wang, JL]Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China;[Wang 更多
来源:FORESTS
出版年:2019
卷:10
期:7
DOI:10.3390/f10070559
关键词:forest type; spectral-spatial-temporal features; random forest; random; forest-recursive feature elimination; sentinel-2 time series
摘要:Spectral, spatial, and temporal features play important roles in land cover classification. However, limitations still exist in the integrated application of spectral-spatial-temporal (SST) features for forest type discrimination. This paper proposes a forest type classification framework based on SST features and the random forest (RF) algorithm. The SST features were derived from time-series images using original bands, vegetation index, gray-level correlation matrix, and harmonic analysis. Random forest-recursive feature elimination (RF-RFE) was used to optimize high-dimensional and correlated feature space, and determine the optimal SST feature set. Then, the classification was carried out using an RF classifier and the optimized SST feature set. This method was applied in the Qinling Mountains using Sentinel-2 time-series images. A total of 21 SST features were obtained through the RF-RFE method, and their importance was evaluated using the Gini index. The results indicated that spectral features contribute the most to separating shrubs, spatial features are more suitable for discrimination among evergreen forest types, and temporal features are more useful for evergreen forest, deciduous forest, and shrub types. The forest type map was generated based on the optimal SST feature set and RF algorithm, and evaluated based on an agreement with the validation dataset. The results showed that this integrated method is reliable, with an overall accuracy of 86.88% and kappa coe ffi cient of 0.86, and can support forest type sustainable management and mapping at the local scale.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068564218&doi=10.3390%2ff10070559&partnerID=40&md5=f7e158a0590aa1c6464e9aaf5bb70f85
TOP