标题:Predicting ground-level PM2.5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach
作者:Li, Xintong; Zhang, Xiaodong
作者机构:[Li, Xintong; Zhang, Xiaodong] Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Shandong, Peoples R China.
通讯作者:Zhang, XD
通讯作者地址:[Zhang, XD]Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Shandong, Peoples R China.
来源:ENVIRONMENTAL POLLUTION
出版年:2019
卷:249
页码:735-749
DOI:10.1016/j.envpol.2019.03.068
关键词:Remote sensing; Aerosol optical depth; Machine learning; PM2.5; Random; forest
摘要:An accurate estimation of PM2.5 (fine particulate matters with diameters <= 2.5 mu m) concentration is critical for health risk assessment and generating air pollution control strategies. In this study, a hybrid remote sensing and machine learning approach, named RSRF model is proposed to estimate daily ground-level PM2.5 concentrations, which integrates Random Forest (RF), one of machine learning (ML) models, and aerosol optical depth (AOD), one of remote sensing (RS) products. The proposed RSRF model provides an opportunity for an adequate characterization of real-time spatiotemporal PM2.5 distributions at uninhabited places and complex surfaces. It also offers advantages in handling complicated non-linear relationships among a large number of meteorological, environmental and air pollutant factors, as well as ever-increasing environmental data sets. The applicability of the proposed RSRF model is tested in the Beijing-Tianjin-Hebei region (BTH region) during 2015-2017. Deep Blue (DB) AOD from Aqua-retrieved Collection 6.1 (C_61) aerosol products of Moderate Resolution Imaging Spectroradiometer (MODIS) is validated with Aerosol Robotic Network. The validation results indicate C_61 DB AOD has a high correlation with ground based AOD in the BTH region. The proposed RSRF model performed well in characterizing spatiotemporal variations of annual and seasonal PM2.5 concentrations. It not only is useful to quantify the relationships between PM2.5 and relevant factors such as DB AOD, meteorological and air pollutant variables, but also can provide decision support for air pollution control at a regional environment during haze periods. (C) 2019 Elsevier Ltd. All rights reserved.
收录类别:SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063446547&doi=10.1016%2fj.envpol.2019.03.068&partnerID=40&md5=b7875a4ac64bbcfb319a99d0a2e79d28
TOP