标题:Cloud data management for scientific workflows: Research issues, methodologies, and state-of-the-art
作者:Yuan, Dong ;Cui, Lizhen ;Liu, Xiao
通讯作者:Liu, Xiao
作者机构:[Yuan, Dong ] School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia;[Liu, Xiao ] Shanghai Key Labora 更多
会议名称:10th International Conference on Semantics, Knowledge and Grids, SKG 2014
会议日期:27 August 2014 through 29 August 2014
来源:Proceedings - 2014 10th International Conference on Semantics, Knowledge and Grids, SKG 2014
出版年:2014
页码:21-28
DOI:10.1109/SKG.2014.37
关键词:Cloud Computing; Data Management; Research Issues; Scientific Workflow
摘要:Data-intensive scientific applications are posing many challenges in distributed computing systems. In the scientific field, the application data are expected to double every year over the next decade and further. With this continuing data explosion, high performance computing systems are needed to store and process data efficiently, and workflow technologies are facilitated to automate these scientific applications. Scientific workflows are typically very complex. They usually have a large number of tasks and need a long time for execution. Running scientific workflow applications usually need not only high performance computing resources but also massive storage. The emergence of cloud computing technologies offers a new way to develop scientific workflow systems. Scientists can upload their data and launch their applications on the scientific cloud workflow systems from everywhere in the world via the Internet, and they only need to pay for the resources that they use for their applications. As all the data are managed in the cloud, it is easy to share data among scientists. This kind of model is very convenient for users, but remains a big challenge to the system. This paper proposes several research topics of data management in scientific cloud workflow systems, and discusses their research methodologies and state-of-the-art solutions. © 2014 IEEE.
收录类别:EI;SCOPUS
Scopus被引频次:3
资源类型:会议论文;期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84918491741&doi=10.1109%2fSKG.2014.37&partnerID=40&md5=f447b38267a09b3adf62b27368d4421f
TOP