标题:STUDY ON FLUID-TO-FLUID MODELING OF CHF OF R134a-WATER IN HORIZONTAL HELICALLY-COILED TUBES
作者:Chen, Chang-Nian; Han, Ji-Tian; Shao, Li; Chen, Wen-Wen; Jen, Tien-Chien
通讯作者:Chen, CN
作者机构:[Chen, Chang-Nian; Han, Ji-Tian; Shao, Li; Chen, Wen-Wen] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Shandong, Peoples R China.
会议名称:14th International Heat Transfer Conference
会议日期:AUG 08-13, 2010
来源:PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 1: BIO HEAT TRANSFER, BOILING HEAT TRANSFER, COMPUTATIONAL HEAT TRANSFER
出版年:2010
页码:347-354
关键词:horizontal helically-coiled tubes; R134a; critical heat flux;; fluid-to-fluid modeling
摘要:The new similarity laws for fluid-to-fluid modeling of critical heat flux (CHF) in horizontal helically-coiled tubes were derived based on the dimensional analysis and similarity theory considering the effect of the geometrical parameters on CHF. A generalized factor Dn was introduced to the new similarity laws, and all the new dimensionless numbers were derived from the classical theorem of Buckingham pi for dimensional analysis. The obtained dimensionless parameter sets were a reasonable extension to Ahmad's compensated distortion model, which may be considered as a special case of the new dimensionless parameter sets when the variable n is equal to unity. Based on the experimental data, the specific similarity numbers were determined for CHF phenomena in horizontal helically-coiled tubes. A new equivalent characteristic parameter De-helix was developed, which could reflect the influence of complex flow channels on the occurrence of CHF. The equivalent characteristic parameter consists of the essential geometrical parameters of tubes and the fluid thermophysical properties. The new fluid-to-fluid modeling methods were proposed for CHF of R134a-water in horizontal helically-coiled tubes, which could be used readily to derive the CHF data of water through the CHF data of R134a at the corresponding experimental conditions.
收录类别:CPCI-S
资源类型:会议论文
TOP