标题:The gradual learning static load modelling method based on real-time fault recorder data
作者:Shi, Guoping ;Liang, Jun
作者机构:[Shi, Guoping ;Liang, Jun ] School of Electrical Engineering, Shandong University, Jinan City, China;[Shi, Guoping ] School of Information and Electri 更多
通讯作者:Shi, Guoping
来源:Computer Modelling and New Technologies
出版年:2014
卷:18
期:5
页码:297-302
摘要:Setting a real-time load model is an effective way to overcome time-variation of power load in course of power load modelling. On the basis of load data sorting, this paper proposes a gradual learning static load modelling method based on power fault recorder data. Firstly, power fault recorder collects and stores valid load data. Secondly, all valid load data will be classified by the time, static load model can be built corresponds to each classification. Thirdly, model parameters of each sort are identified by gradual learning method, for the goal of global fitting optimal for the measured active power and calculated active power, the load model parameters are optimized by using curve fitting method. The identified model parameters can be applied to power system calculation directly without preserving all load data, essential feature of all load data is reserved and modelling operational efficiency is improved greatly. Simulation results show that the gradual learning method is right and effective, which is easier to realize and is of higher precision compared with least squares method, therefore the method has widely applicable value and is prospective in power system on-line static load modelling.
收录类别:EI
资源类型:期刊论文
TOP