标题:Fault Diagnosis of Rolling Bearings Based on Undirected Weighted Graph
作者:Wang, Teng ;Lu, Guoliang ;Yan, Peng
通讯作者:Lu, Guoliang
作者机构:[Wang, Teng ;Lu, Guoliang ;Yan, Peng ] Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, National Demonstration Center for Ex 更多
会议名称:2019 Prognostics and System Health Management Conference, PHM-Paris 2019
会议日期:2 May 2019 through 5 May 2019
来源:Proceedings - 2019 Prognostics and System Health Management Conference, PHM-Paris 2019
出版年:2019
页码:30-34
DOI:10.1109/PHM-Paris.2019.00013
关键词:Bearing fault diagnosis; Graph model; K-Nearest Neighbor; Periodogram
摘要:One of the main functions of rolling bearing condition monitoring is to diagnosis the type of fault that is occurred during its continuous operations. This paper presents a new method for rolling bearing fault diagnosis based on the graph model. Concretely, through Fourier transform, the periodogram is computed from the condition monitoring (CM) signal and then modeled into an undirected weighted graph. This graph is subsequently fed to K-Nearest Neighbor (KNN) Classifier for fault type diagnosis. In particular, to perform KNN upon graph model, a robust graph distance metric so-called sum of the difference in edge-weight values (SDEWV) is adopted via investigating four candidate metrics existed in the literature. Based on experimental results in the publicly-available database, we demonstrate exciting results of the proposed method in bearing fault diagnosis, indicating its great potentials in real engineering applications. © 2019 IEEE.
收录类别:EI;SCOPUS
资源类型:会议论文;期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070510833&doi=10.1109%2fPHM-Paris.2019.00013&partnerID=40&md5=626a51988153aa614cb2d37691dde3aa
TOP