标题:Airport Unexploded Ordnances Identification Based on Artificial Neural Network and Fuzzy Support Vector Machines
作者:Cai, Lei; Zhang, Xuexia; Li, Lianchang
通讯作者:Cai, L
作者机构:[Cai, Lei; Li, Lianchang] Shangdong Univ, Coll Control Sci & Engn, Jinan 250061, Peoples R China.; [Zhang, Xuexia] Coll Anim Sci, Henan Inst Sci & T 更多
会议名称:8th World Congress on Intelligent Control and Automation (WCICA)
会议日期:JUL 06-09, 2010
来源:2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA)
出版年:2010
页码:3104-3108
DOI:10.1109/WCICA.2010.5553844
关键词:Airport Unexploded Ordnances; Artificial neural network; Fuzzy Support; vector machines
摘要:Considering the instability of airport unexploded ordnances(UXO) and the complexity of environment, the theory of artificial neural network(ANN)-fuzzy support vector machines (FSVMs) is presented to penetrate UXO. Different from the traditional target identification methods, the proposed approach uses the characteristics of ground penetrating radar target data analyzed by using the principal component analysis (PCA) technique. Considered many coterminous characteristics data of the targets, they are classified with a combination of support vector classifiers (SVCs) and feed forward neural networks (FFNNs). The risk membership to each input points is confirmed on the base of processing input data, and then is leaded into the reasoning process of the decision function. The results of UXO show that the proposed approach gives accurate results in terms of the estimated UXO identification.
收录类别:CPCI-S
资源类型:会议论文
TOP