标题:Oscillations of coefficients of symmetric square L-functions over primes
作者:Hou, Fei
作者机构:[Hou, F] School of Mathematics, Shandong University, Jinan, 250100, China
通讯作者:Hou, F(feihou.prc@gmail.com)
通讯作者地址:[Hou, F]Shandong Univ, Sch Math, Jinan 250100, Peoples R China.
来源:中国数学前沿
出版年:2015
卷:10
期:6
页码:1325-1341
DOI:10.1007/s11464-015-0442-6
关键词:symmetric-square L-function;primitive holomorphic cusp form;Fourier coefficient
摘要:(n)t (f) (n, 1)e(n alpha) a parts per thousand(a) N , where I >(n) is the von Mangoldt function, and the implied constant only depends on f. We also study the analogue of Vinogradov's three primes theorem associated to the coefficients of Rankin-Selberg L-functions.">Let L(s, sym(2) f) be the symmetric-square L-function associated to a primitive holomorphic cusp form f for SL(2,a"currency sign), with t (f) (n, 1) denoting the nth coefficient of the Dirichlet series for it. It is proved that, for N a (c) 3/4 2 and any alpha a a"e, there exists an effective positive constant c such that I pound (na (c) 1/2N) I >(n)t (f) (n, 1)e(n alpha) a parts per thousand(a) N , where I >(n) is the von Mangoldt function, and the implied constant only depends on f. We also study the analogue of Vinogradov's three primes theorem associated to the coefficients of Rankin-Selberg L-functions.
收录类别:CSCD;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942986732&doi=10.1007%2fs11464-015-0442-6&partnerID=40&md5=d1cc245f07f4a3da0f5d6a4d62efc7c5
TOP