标题:Two-stage local details restoration framework for face hallucination
作者:Zhao, Di; Chen, Zhenxue; Wu, Q. M. Jonathan; Liu, Chengyun
作者机构:[Zhao, Di; Chen, Zhenxue; Liu, Chengyun] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China.; [Chen, Zhenxue] Shandong U 更多
通讯作者:Chen, Zhenxue;Chen, ZX;Chen, ZX
通讯作者地址:[Chen, ZX]Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China;[Chen, ZX]Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, 更多
来源:MACHINE VISION AND APPLICATIONS
出版年:2019
卷:30
期:1
页码:153-162
DOI:10.1007/s00138-018-0983-2
关键词:Face hallucination; Two-stage framework; Position-patch; Contextual; information
摘要:Face hallucination is of great importance in many applications. In this paper, a novel two-stage framework is proposed for hallucinating high-resolution (HR) face image from the given low-resolution (LR) one. In contrast to the existing methods, where the finer details are ignored, our framework pays more attention to the further local details enhancement. In the first stage, the local position-patch-based method with locality constraint is introduced to obtain the initial estimate image. In order to generate more reasonable face image and reduce noise, our method only represents the input LR patches over the similar training patches in the same position. In the second stage, the initial estimate image rather than residual image is directly used as the input to obtain the final HR image via local position-patch-based method. Besides, contextual information of position-patch is taken into consideration to generate more precise details in the second stage. Extensive experiments on the open face database illustrate that the proposed method achieves superior performance in comparison with state-of-the-art methods.
收录类别:EI;SCOPUS;SCIE;SSCI
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054696407&doi=10.1007%2fs00138-018-0983-2&partnerID=40&md5=9307370413c10e9c007e747088ceb328
TOP