标题:Well-defined cobalt sulfide nanoparticles locked in 3D hollow nitrogen-doped carbon shells for superior lithium and sodium storage
作者:Shangguan, Huihui ;Huang, Wei ;Engelbrekt, Christian ;Zheng, Xiaowen ;Shen, Fei ;Xiao, Xinxin ;Ci, Lijie ;Si, Pengchao ;Zhang, Jingdong
作者机构:[Shangguan, Huihui ;Huang, Wei ;Zheng, Xiaowen ;Ci, Lijie ;Si, Pengchao ] SDU&Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-So 更多
通讯作者:Si, Pengchao
通讯作者地址:[Si, P] SDU&Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of 更多
来源:Energy Storage Materials
出版年:2019
卷:18
页码:114-124
DOI:10.1016/j.ensm.2019.01.012
关键词:Cobalt sulfide; hollow structure; lithium ion storage; metal organic framework; sodium ion storage
摘要:Hollow nanostructured materials present a class of promising electrode materials for energy storage and conversion. Herein, 3D hollow nitrogen-doped carbon shells decorated with well-defined cobalt sulfide nanoparticles (Co 9 S 8 /HNCS) have been constructed for superior lithium and sodium storage. Two steps are involved in the designed preparation procedure. First, hollow intermediates with preserved cobalt components are controllably fabricated by simultaneously dissociating cobalt containing zeolitic-imidazolate-frameworks-67 (ZIF-67), and polymerizing dopamine in a Tris–HCl solution (pH = 8.5). The polydopamine (PDA) wrapped intermediates inherits the polyhedral structure of the ZIF-67 crystals. In the second step, the final Co 9 S 8 /HNCS composite is obtained via a combined carbonization and sulfurization treatment of the intermediates, allowing the formation of hollow polyhedrons of nitrogen-doped carbon shells (900±100 nm) derived from PDA and the encapsulation of highly uniform cobalt sulfide nanoparticles (11±2 nm). This configuration is believed to not only shorten the lithium or sodium ion diffusion distance and accommodate volume change during lithium or sodium ion insertion/extraction, but also to enhance the overall electrical conductivity and the number of active sites. As a result, the Co 9 S 8 /HNCS composite exhibits an impressive reversible capacity of 755 mA h g -1 at 500 mA g -1 after 200 cycles for lithium ion storage, and capacities of 327 mA h g -1 at 500 mA g -1 after 200 cycles and 224 mA h g -1 at 1000 mA g -1 after 300 cycles for sodium ion storage. Essential factors especially the structural stability during cycling have been identified, and the discharge/charge mechanism is discussed. © 2019 Elsevier B.V.
收录类别:EI;SCOPUS
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061674598&doi=10.1016%2fj.ensm.2019.01.012&partnerID=40&md5=5bd68839fb583d257e9941e26856a12e
TOP