标题:Coral-like NixCo1-xSe2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability
作者:He, Yanyan; Luo, Ming; Dong, Caifu; Ding, Xuyang; Yin, Chaochuang; Nie, Anmin; Chen, Yanan; Qian, Yitai; Xu, Liqiang
作者机构:[He, Yanyan; Luo, Ming; Dong, Caifu; Ding, Xuyang; Qian, Yitai; Xu, Liqiang] Shandong Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Colloid & Inter 更多
通讯作者:Xu, Liqiang;Xu, LQ;Xu, LQ;Chen, YA;Chen, YA
通讯作者地址:[Xu, LQ]Shandong Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China;[Xu, LQ]Shandong U 更多
来源:JOURNAL OF MATERIALS CHEMISTRY A
出版年:2019
卷:7
期:8
页码:3933-3940
DOI:10.1039/c8ta10114k
摘要:Storage technology of electrical energy with ultrafast charge/discharge rates is in high demand for future electronics and electric vehicles. Among them, sodium ion batteries (SIBs) have received much attention, however, the exploration of electrode materials with a high rate capacity and long cycle life still faces great challenges. In this work, we have fabricated coralloid NixCo1-xSe2 with a hierarchical architecture for the first time, and it presents specific capacities of 321 mA h g(-1) after 2000 cycles at 2 A g(-1), corresponding to a capacity decay rate of 0.011% per-cycle, and 277 mA h g(-1) even at the high rate of 15 A g(-1), which could be attributed to the enhanced conductivity by Co-doping, the hierarchical architecture preventing the structure from collapsing or crushing, the accelerated electron transmission and the shortened diffusion distance of Na+. The extremely fast electron and Na ion transfer kinetics could be associated with the capacitive contribution. We further reveal the ultrastable and ultrahigh rate Na-ion storage mechanism through systematic analysis including compositional/structure evolution studies and comprehensive electrochemical characterizations. The presented strategy for the design and synthesis of coralloid, Co doped NiSe2 with a hierarchical architecture could enlighten researchers on the development of electrodes with an ultralong cycle life and ultrahigh rate capability.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061790106&doi=10.1039%2fc8ta10114k&partnerID=40&md5=9e70b3ea45ab094021321c085356f2f8
TOP