标题:Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations
作者:Comber, Alexis; Zeng, Wen
作者机构:[Comber, Alexis; Zeng, Wen] Univ Leeds, Sch Geog, Leeds, W Yorkshire, England.; [Zeng, Wen] Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590 更多
通讯作者:Comber, A;Zeng, W
通讯作者地址:[Comber, A; Zeng, W]Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Shandong, Peoples R China.
来源:GEOGRAPHY COMPASS
出版年:2019
卷:13
期:10
DOI:10.1111/gec3.12465
关键词:geocomputation; population; spatial analysis; spatial analytics
摘要:This paper provides a high-level review of different approaches for spatial interpolation using areal features. It groups these into those that use ancillary data to constrain or guide the interpolation (dasymetric, statistical, street-weighted, and point-based), and those do not but instead develop and refine allocation procedures (area to point, pycnophylactic, and areal weighting). Each approach is illustrated by being applied to the same case study. The analysis is extended to examine the opportunities arising from the many new forms of spatial data that are generated by everyday activities such as social media, check-ins, websites offering services, microblogging sites, and social sensing, as well as intentional VGI activities, both supported by ubiquitous web- and GPS-enabled technologies. Here, data of residential properties from a commercial website was used as ancillary data. Overall, the interpolations using many of the new forms of data perform as well as traditional, formal data, highlighting the analytical opportunities as ancillary information for spatial interpolation, and for supporting spatial analysis more generally. However, the case study also highlighted the need to consider the completeness and representativeness of such data. The R code used to generate the data, to develop the analysis and to create the tables and figures is provided.
收录类别:SCOPUS;SSCI
Scopus被引频次:1
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070702129&doi=10.1111%2fgec3.12465&partnerID=40&md5=623d6afad95c8506db6949717d1242e8
TOP