标题:A Smart DNA Tweezer for Detection of Human Telomerase Activity
作者:Xu, Xiaowen; Wang, Lei; Li, Kan; Huang, Qihong; Jiang, Wei
作者机构:[Xu, Xiaowen; Li, Kan; Jiang, Wei] Shandong Univ, Sch Chem & Chem Engn, Educ Minist, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples 更多
通讯作者:Jiang, Wei
通讯作者地址:[Jiang, W]Shandong Univ, Sch Chem & Chem Engn, Educ Minist, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China.
来源:ANALYTICAL CHEMISTRY
出版年:2018
卷:90
期:5
页码:3521-3530
DOI:10.1021/acs.analchem.7b05373
摘要:Reliable and accurate detection of telomerase activity is crucial to better understand its role in cancer cells and to further explore its function in cancer diagnosis and treatment. Here, we construct a smart DNA tweezer (DT) for detection of telomerase activity. The DT is assembled by three specially designed single-stranded oligonucleotides: a central strand dually labeled with donor/acceptor fluorophores and two arm strands containing overhangs complementary to telomerase reaction products (TRPs). It can get closed through hybridization with TRPs and get reopen through strand displacement reaction by TRPs' complementary sequences. First, under the action of telomerase, telomerase binding substrates (TS) are elongated to generate TRPs ended with telomeric repeats (TTAGGG)(n). TRPs hybridize with the two arm overhangs cooperatively and strain DT to closed state, inducing an increased fluorescence resonance energy transfer (FRET) efficiency, which is utilized for telomerase activity detection. Second, upon introduction of a removal strand (RS) complementary to TRPs, the closed DT is relaxed to open state via the toehold mediated strand displacement, inducing a decreased FRET efficiency, which is utilized for determination of TRP length distribution. The detection limit of telomerase activity is equivalent to 141 cells/mu L for HeLa cells, and telomerase-active cellular extracts can be differentiated from telomerase-inactive cellular extracts. Furthermore, TRPs owning 1, 2, 3, 4, and >= 5 telomeric repeats are identified to account for 25.6%, 20.5%, 15.7%, 12.5%, and 25.7%, respectively. The proposed strategy will offer a new approach for reliable, accurate detection of telomerase activity and product length distribution for deeper studying its role and function in cancer.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:2
Scopus被引频次:4
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043466178&doi=10.1021%2facs.analchem.7b05373&partnerID=40&md5=bcf5f7477801ed8d5a09294729a932c5
TOP