标题:Energy Band Engineering of Polymeric Carbon Nitride with Indium Doping for High Enhancement in Charge Separation and Photocatalytic Performance
作者:Li, Haiping; Xia, Yuguo; Liang, Zhiwei; Ba, Guiming; Hou, Wanguo
作者机构:[Li, Haiping; Xia, Yuguo; Liang, Zhiwei; Ba, Guiming] Shandong Univ, Natl Engn Res Ctr Colloidal Mat, Jinan 250100, Peoples R China.; [Hou, Wanguo] 更多
通讯作者:Hou, Wanguo;Hou, WG
通讯作者地址:[Hou, WG]Shandong Univ, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China.
来源:ACS APPLIED ENERGY MATERIALS
出版年:2020
卷:3
期:1
页码:377-386
DOI:10.1021/acsaem.9b01641
关键词:photocatalysis; hydrogen evolution; carbon nitride; doping indium
摘要:Metal doping is a valid strategy to increase simultaneously photoabsorption, the charge separation efficiency, and thus the photocatalytic activity of polymeric carbon nitride (CN); however, metal elements in groups IIIA-VA in the periodic table are rarely researched in doping CN. Herein, indium (In)-doped CN (In:CN) was first synthesized with In3+ ions inserted in the interlayer, approaching the cavities in the monolayer sheets, and fixed through coordination with nitrogen atoms around them. In:CN exhibits a higher photoabsorption, specific surface area, charge separation and transfer efficiency, and photocatalytic performance in H-2 generation and environmental remediation than bulky CN. The H-2 generation and rhodamine B decomposition rates for In:CN are similar to 2.9 and 4.6 times those for CN, respectively. The apparent quantum yield (420 nm) of In:CN for H-2 production can reach 6.8%. The enhancement in charge separation plays an indispensable role for the photoactivity increase of In:CN, which originates from the generation of an impurity level above the valence band edge in the bandgap because of the In doping, i.e., the In3+-coordination structure works as a hole-capture center. This paper supplies an easy method for CN modification and illustrates the mechanism for In-doping-induced change of the energy band structure, which may guide the preparation of other CN-based photocatalysts with metal doping.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077008643&doi=10.1021%2facsaem.9b01641&partnerID=40&md5=f30386ea42b50a7606e363a4d0adeec3
TOP