标题:Lithium-ion Migration in Layered Li1.06Ni0.5Co0.2Mn0.3O2 Cathode Materials Synthesized at Different Temperatures
作者:Xu, Zi-Zhen; Gu, Yi-Jie; Liu, Hong-Quan; Chen, Yun-Bo; Lin, Meng-Chang
作者机构:[Xu, Zi-Zhen; Gu, Yi-Jie; Liu, Hong-Quan; Chen, Yun-Bo] Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266510, Peoples R China.; [Lin, Me 更多
通讯作者:Gu, YJ;Lin, MC
通讯作者地址:[Gu, YJ]Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266510, Peoples R China;[Lin, MC]Shandong Univ Sci & Technol, Coll Elect Engn & Auto 更多
来源:INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE
出版年:2018
卷:13
期:1
页码:936-950
DOI:10.20964/2018.01.91
关键词:Layered cathode materials; Cation mixing; Tetrahedral for Li-ion; migration
摘要:We examined the effects of synthesis temperature on the structural and electrochemical properties of layered Li1.06Ni0.5Co0.2Mn0.3O2 cathode materials synthesized by co-precipitation. Scanning electron microscopy showed that a higher synthesis temperature resulted in a bigger primary particle size. Rietveld refinement revealed that the content of nickel ions at the 3b site decreased from 0.041 to 0.038 and subsequently increased to 0.064 as synthesis temperature rose from 800 to 980 degrees C. The incircle/circumcircle radii of the tetrahedral sites providing space for lithium-ion migration increased gradually with synthesis temperature. The Li1.06Ni0.5Co0.2Mn0.3O2 sample synthesized at 920 degrees C displayed the optimal electrochemical performance, delivering a discharge capacity of 181.6 mAhg(-1) and initial coulombic efficiency of 84.2% at 0.1C between 2.5 and 4.5 V. Our analysis indicates that the level of cation mixing and the incircle/circumcircle radii of tetrahedral sites in LiNixCoyMnzO2 are the main factors that affect its electrochemical performance rather than primary particle size.
收录类别:SCIE
资源类型:期刊论文
TOP