标题:Adjacent vertex distinguishing total choosability of planar graphs with maximum degree at least 10
作者:Chang, Yulin; Ouyang, Qiancheng; Wang, Guanghui
作者机构:[Chang, Yulin; Ouyang, Qiancheng; Wang, Guanghui] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.
通讯作者:Wang, GH;Wang, Guanghui
通讯作者地址:[Wang, GH]Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.
来源:JOURNAL OF COMBINATORIAL OPTIMIZATION
出版年:2019
卷:38
期:1
页码:185-196
DOI:10.1007/s10878-018-00375-w
关键词:Adjacent vertex distinguishing total coloring; Planar graph;; Combinatorial Nullstellensatz; Discharging
摘要:A (proper) total-k-coloring phi:V(G)E(G){1,2,...,k} is called adjacent vertex distinguishing if C phi(u)C phi(v) for each edge uvE(G), where C phi(u) is the set of the color of u and the colors of all edges incident with u. We use a(G) to denote the smallest value k in such a coloring of G. Zhang et al. first introduced this coloring and conjectured that a(G)(G)+3 for any simple graph G. For the list version of this coloring, it is known that cha(G)(G)+3 for any planar graph with (G)11, where cha(G) is the adjacent vertex distinguishing total choosability. In this paper, we show that if G is a planar graph with (G)10, then cha(G)(G)+3.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059670594&doi=10.1007%2fs10878-018-00375-w&partnerID=40&md5=cb895b5c1a764ac92fd6d6e0b8ef3253
TOP