标题:Interface Engineering of Co(OH)(2)/Ag/FeP Hierarchical Superstructure as Efficient and Robust Electrocatalyst for Overall Water Splitting
作者:Ding, Xiaotong; Xia, Yuguo; Li, Qiannan; Dong, Shun; Jiao, Xiuling; Chen, Dairong
作者机构:[Ding, Xiaotong; Li, Qiannan; Jiao, Xiuling; Chen, Dairong] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China.; [Xia, Yug 更多
通讯作者:Chen, Dairong;Chen, DR;Xia, YG
通讯作者地址:[Chen, DR]Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China;[Xia, YG]Shandong Univ, Natl Engn Res Ctr Colloidal Mat, Jinan 更多
来源:ACS APPLIED MATERIALS & INTERFACES
出版年:2019
卷:11
期:8
页码:7936-7945
DOI:10.1021/acsami.8b19623
关键词:interface engineering; bifunctional electrocatalysts; electrocatalysis;; water splitting; water dissolution
摘要:Rational design and preparation of electrocatalyst with optimal component and interfaces, which can work well for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, are of great importance in practical water splitting. Herein, a multiscale structure surface engineering approach to construct Co(OH)(2)/Ag/FeP hybrid as efficient electrocatalysis for water splitting in alkaline media is reported. By optimizing the component ratio and engineering interfacial structure, the Co(OH)(2)/Ag/FeP hybrid eletrocatalyst exhibits promoted HER and OER activity as well as stability in alkaline media, achieving an overpotential of 118 and 236 mV at a current density of 10 mA cm(-2), respectively. Further experimental characterizations demonstrate the electron structure changes in Co(OH)(2)/Ag/FeP hybrid after constructing the interfaces, which is beneficial to generate low-charge state Fe' and high-oxidized Co3+/4+. The first-principle calculations reveal that the dissociation of H2O at the interface region is energetically favorable, which is responsible for the enhanced HER and OER activity. Furthermore, two-electrode alkaline water electrolyzer constructed by Co(OH)(2)/Ag/FeP hybrid electrocatalysts only requires a voltage of 1.56 V to afford a current density of 10 mA cm(-2), which is superior to the commercial Pt/C IrO2 catalytic couple and makes it a promising material to be employed as effective bifunctional catalysts for overall water splitting.
收录类别:EI;SCOPUS;SCIE
Scopus被引频次:1
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062328554&doi=10.1021%2facsami.8b19623&partnerID=40&md5=972b552280e475c426eb35acbcabe1a8
TOP