标题:An efficient design strategy for a whole-cell biosensor based on engineered ribosome binding sequences
作者:Yu, Q.;Li, Y.;Ma, A.;Liu, W.;Wang, H.;Zhuang, G.
通讯作者:Zhuang, G
作者机构:[Yu, Q] Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China;[ Li, Y] Research Center for 更多
来源:Analytical and bioanalytical chemistry
出版年:2011
卷:401
期:9
页码:2891-2898
DOI:10.1007/s00216-011-5411-7
关键词:Detection sensitivity;Ribosome binding sequence;Signal intensity;Whole-cell biosensor
摘要:In prokaryotes, the ribosome binding sequence (RBS), located in the 5′ untranslated region (5′ UTR) of an mRNA, plays a critical role in enhancing mRNA translation and stability. To evaluate the effect of the RBS on the sensitivity and signal intensity of an environmental whole-cell biosensor, three Escherichia coli-based biosensors that respond to benzene, toluene, ethylbenzene, and the xylenes (BTEX) were constructed; the three biosensors have the same Pu promoter and xylR regulator from the Pseudomonas putida TOL plasmid but differ in the engineered RBS in their reporter genes. The results from time and dose-dependent induction of luminescence activity by 2-chlorotoluene showed that the BTEX-SE and BTEX-SD biosensors with engineered RBS had signal intensities approximately 10-35 times higher than the primary BTEX-W biosensor. The limits of detection (LOD) of the BTEX-SE and BTEX-SD biosensors were also significantly lower than the LOD of the BTEX-W biosensor (20 ± 5 μmol L~(-1) and 25 ± 5 μmol L~(-1) vs. 120 ± 10 μmol L~(-1)). Moreover, the BTEX-SE and BTEX-SD biosensors responded three times more rapidly to the analytes. These results suggest that rationally designed RBS in the 5′ UTR of a reporter gene may be a promising strategy for increasing the sensitivity, signal intensity, and response speed of whole-cell biosensors. [Figure not available: see fulltext.]
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:5
Scopus被引频次:7
资源类型:会议论文;期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-81855175974&doi=10.1007%2fs00216-011-5411-7&partnerID=40&md5=2e7431e01ee9d623dc93aab0c25a0204
TOP