标题:Binderless, bendable graphene/FexSn1-xO2 anode for lithium-ion batteries without the necessity of a current collector
作者:Zhang, Xueqian ;Huang, Xiaoxiao ;Liu, Dongdong ;Hoang, Tuan K.A. ;Geng, Xin ;Chen, Pu ;Zhang, Xiaodong ;Wen, Guangwu
作者机构:[Zhang, Xueqian ;Huang, Xiaoxiao ;Liu, Dongdong ;Geng, Xin ;Zhang, Xiaodong ] School of Materials Science and Engineering, Harbin Institute of Technol 更多
通讯作者:Huang, Xiaoxiao
来源:International Journal of Hydrogen Energy
出版年:2018
页码:21428-21440
DOI:10.1016/j.ijhydene.2018.09.169
摘要:SnO2 is an appealing anode material for lithium ion batteries. Advantages of SnO2 includes relatively low charge-discharge plateau and highly abundance in nature. However, the volume change (300%) is significant and critically impeding its cycle life. In this manuscript, we address these problems by exploiting an in-situ redox process to prepare graphene encapsulated SnO2 nanoparticles using soluble Sn2+ as the Sn precursor, which is oxidized to SnO2 by using graphene oxide. This method affords graphene @ SnO2 via oxygen bridging through of SnO2 nanoparticles. Furthermore, this method incorporates Fe atom into the SnO2 structure in-situ to create FexSn1-xO2 structure, which exhibits higher Li storage capacity. Our synthetic approach delivers graphene encapsulated FexSn1-xO2 structure, which is located on flexible carbonaceous fibers, and the whole system can be applied as lithium-ion batteries anode without any need of a current collector or binder polymer. This novel Sn based electrode could deliver a high capacity (calculate total electrode mass) of 454.3 mAh g−1 after 200 cycles at 100 mA g−1 (65.1% retention). Unlike most contemporary technologies, increasing the thickness of our Sn based electrode simply increases the capacity proportionally. The areal capacity is 1348.3 μAh cm−2, and it is simply doubled to 2856.1 μAh cm−2 while we double the thickness of electrode.
© 2018 Hydrogen Energy Publications LLC
收录类别:EI
资源类型:期刊论文
TOP