标题:Quasi-periodic solutions for the quasi-periodically forced cubic complex Ginzburg-Landau equation on T-d
作者:Cheng, Hongyu; Si, Jianguo
作者机构:[Cheng, Hongyu; Si, Jianguo] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.
通讯作者:Si, JG
通讯作者地址:[Si, JG]Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.
来源:JOURNAL OF MATHEMATICAL PHYSICS
出版年:2013
卷:54
期:8
DOI:10.1063/1.4817864
摘要:In this paper, we discuss the existence of time quasi-periodic solutions for quasi-periodically forced cubic complex Ginzburg-Landau equation of higher spatial dimension with basic frequency vector omega = (omega(1), omega(2), ... , omega(m)). By constructing a KAM (Kolmogorov-Arnold-Moser) theorem for a dissipative system which depends on time in a quasi-periodic way, we obtain a Cantorian branch of m + 2-dimensional invariant tori for the equation. (C) 2013 AIP Publishing LLC.
收录类别:SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883394511&doi=10.1063%2f1.4817864&partnerID=40&md5=1db1c17f1ba46ab5a60fd6142585658f
TOP