标题:First principles prediction of materials for spintronics: From bulk to nano
作者:Shen, L. ;Zeng, M.G. ;Pan, H. ;Lim, C.C. ;Lu, Y.H. ;Xu, B. ;Sun, J.T. ;Yi, J.B. ;Yang, K.S. ;Feng, Y.P. ;Ding, J. ;Yang, S.W. ;Dai, Y. ;Wee, A. ;Lin, 更多
通讯作者:Feng, Y P
作者机构:[Shen, L. ;Zeng, M.G. ;Lim, C.C. ;Lu, Y.H. ;Xu, B. ;Sun, J.T. ;Feng, Y.P. ;Wee, A. ] Department of Physics, National University of Singapore, Singapor 更多
会议名称:8th International Vacuum Electron Sources Conference, IVESC 2010 and NANOcarbon 2010
会议日期:14 October 2010 through 16 October 2010
来源:Proceedings - 2010 8th International Vacuum Electron Sources Conference and Nanocarbon, IVESC 2010 and NANOcarbon 2010
出版年:2010
页码:129-130
DOI:10.1109/IVESC.2010.5644347
摘要:The continued down-scaling of complementary metal-oxide-semiconductor (CMOS) devices requires replacement of the conventional Si dioxide or oxynitride dielectric by alternative high-k materials immediately. For long term consideration, electron devices may be replaced by spintronic devices which make use of both charge and spin, two fundamental properties of electron. However, to realize these, many materials issues to be addressed. Materials design based on computational methods is playing an increasingly important role in today's materials science and engineering research. Among the various approaches, the first-principles electronic structure method based on density functional theory (DFT) is ideal for designing new materials because such methods do not require experimental inputs and prior knowledge on the materials. We have been using first-principles method to study properties of materials for future advanced technologies and to design new materials. Some of our recent works are discussed. © 2010 IEEE.
收录类别:EI;SCOPUS
资源类型:会议论文;期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650662399&doi=10.1109%2fIVESC.2010.5644347&partnerID=40&md5=e9ff7f4279962535858575f8617a960c
TOP