标题:On effective determination of cusp forms by L-values, level aspect
作者:Pi, Qinghua
作者机构:[Pi, QH]Shandong Univ, Sch Math & Stat, Shandong 264209, Peoples R China.
通讯作者:Pi, QH
通讯作者地址:[Pi, QH]Shandong Univ, Sch Math & Stat, Shandong 264209, Peoples R China.
来源:JOURNAL OF NUMBER THEORY
出版年:2014
卷:142
页码:305-321
DOI:10.1016/j.jnt.2014.03.012
关键词:Effective determination; Holomorphic newform; Rankin-Selberg L-function
摘要:Let f be a normalized holomorphic Hecke newform of weight k <= K and level q <= Q with trivial nebentypus. We give the approximate formulas for the first moments of L(1/2, f circle times g) and L'(1/2, f circle times g), where g runs over H-l(N, chi N), the normalized Hecke eigen-basis of holomorphic cusp forms of weight l and level N with nebentypus chi N = (N/center dot). As an application, we obtain some quantitative results that f is uniquely determined by the central values of L(s, f circle times g) and L'(s, f circle times g), where g runs over H-l(N,chi N) (C) 2014 Elsevier Inc. All rights reserved.
收录类别:SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84900834463&doi=10.1016%2fj.jnt.2014.03.012&partnerID=40&md5=86d7570a421d822c10abb6d262a6bf75
TOP