标题:Neighbor sum distinguishing total colorings of planar graphs
作者:Li, Hualong;Ding, Laihao;Liu, Bingqiang;Wang, Guanghui
作者机构:[Li, H] School of Mathematics, Shandong University, Jinan, Shandong 250100, China;[ Ding, L] School of Mathematics, Shandong University, Jinan, Shand 更多
通讯作者:Wang, Guanghui
通讯作者地址:[Wang, GH]Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.
来源:Journal of combinatorial optimization
出版年:2015
卷:30
期:3
页码:675-688
DOI:10.1007/s10878-013-9660-6
关键词:Neighbor sum distinguishing total coloring;Planar graph;Maximum degree
摘要:A total [k]-coloring of a graph is a mapping such that any two adjacent or incident elements in receive different colors. Let denote the sum of the color of a vertex and the colors of all incident edges of . A total -neighbor sum distinguishing-coloring of is a total -coloring of such that for each edge , . By , we denote the smallest value in such a coloring of . PilA > niak and WoA(0)niak conjectured for any simple graph with maximum degree . In this paper, we prove that this conjecture holds for any planar graph with maximum degree at least 13.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:33
Scopus被引频次:36
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941422970&doi=10.1007%2fs10878-013-9660-6&partnerID=40&md5=9a6e41ad7d69c76cc3a0a822de3b0af2
TOP