标题:Dynamical Variation of Weierstrass-Mandelbrot Function in Higher Dimensional Space
作者:Li Zhang; Shu Tang Liu
作者机构:[Li Zhang] Shandong Univ Polit Sci & Law, Sch Business, Jinan 250014, Peoples R China.; [Shu Tang Liu] Shandong Univ, Coll Control Sci & Engn, Jinan 更多
会议名称:2nd International Conference on Mechanical Engineering, Materials Science and Civil Engineering (ICMEMSCE 2013)
会议日期:OCT 25-26, 2013
来源:MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING II
出版年:2014
卷:470
页码:767-771
DOI:10.4028/www.scientific.net/AMM.470.767
关键词:Fractal; Weierstrass-Mandelbrot function; Higher dimension; Hurst; exponent
摘要:Many real complex phenomena are related with Weierstrass-Mandelbrot function (WMF). Most researches focus on the systems as parameters fixed, such as calculations of its different fractal dimensions or the statistical characteristics of its generalized form and so on. Moreover, real systems always change according to different environments, so that to study the dynamical behavior of these systems as parameters change is important. However, there is few results about this aim. In this paper, we propose simulated results for the effects of parameters changeably on the graph of WMF in higher dimensional space. In addition, the relationships between the Hurst exponent of WMF and its parameters dynamically in 2-and 3- dimensional spaces are also given.
收录类别:CPCI-S;EI;SCOPUS
资源类型:会议论文;期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891282309&doi=10.4028%2fwww.scientific.net%2fAMM.470.767&partnerID=40&md5=dc442c6e6b483eea7350de6b4b75c5a8
TOP