标题:Scalable Synthesis of High-Tapped-Density N-doped Graphene by Polyethyleneimine-Mediated Thermal Treatment of Graphene Oxide and Its Application for Supercapacitors
作者:Yue, Fang; Zheng, Yiqun; Liu, Jinglei; Song, Xiaoxiao; Wang, Hua; Li, Fengting; Tian, Yangyang; Zhang, Junfeng; Hou, Shifeng
作者机构:[Yue, Fang; Li, Fengting; Tian, Yangyang] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China.; [Zheng, Yiqun; Liu, Jinglei 更多
通讯作者:Hou, Shifeng
通讯作者地址:[Hou, SF]Shandong Univ, Natl Engn Res Ctr Colloidal Mat, Jinan 250100, Shandong, Peoples R China.
来源:ELECTROCHIMICA ACTA
出版年:2017
卷:254
页码:181-190
DOI:10.1016/j.electacta.2017.09.117
关键词:tapped density; nitrogen-doped; graphene; volumetric capacitance;; supercapacitor
摘要:Development of high-tapped-density graphene-based materials with satisfactory Brunauer-Emmett-Teller (BET) surface area can be beneficial to the optimization of the volumetric performance of supercapacitors for practical use. Herein, we report a simple and scalable route for the synthesis of high tapped-density N-doped graphene (HNG). The success of this work relies on the use of polyethyleneimine (PEI) to react with graphene oxide under ambient conditions to realize fast cross-linking and thus rapid sedimentation, followed by thermal treatment of the precipitates. The resultant HNG exhibits a good balance between the tapped density and BET surface area, where the tapped density can be tuned in the range of 0.90-1.20 g cm(3) and the BET surface area is maintained in the range of 457.0-119.6 m(2) g(-1). The interaction between PEI and graphene oxide successfully prevents restacking of the graphene layers during thermal treatment while allowing maximal volume shrinkage. When applied as an electrode material in supercapacitors, the HNG exhibits a volumetric capacitance up to 547.8 F cm(3) at a scan rate of 10 mV s(-1) and 317.3 F cm(3) at a current density 0.2 A g(-1), and it shows no apparent decrease in the specific capacitance after 5000 cycles at 2 A g(-1). The results demonstrate the feasibility of the new strategy for designing high-tapped-density graphene-based materials for supercapacitors. (C) 2017 Elsevier Ltd. All rights reserved.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:1
Scopus被引频次:1
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030116349&doi=10.1016%2fj.electacta.2017.09.117&partnerID=40&md5=70b74f4174b287ac8e19d9e08c5c2f46
TOP