标题:A Two-Step Feature Selection Method to Predict Cancerlectins by Multiview Features and Synthetic Minority Oversampling Technique
作者:Yang, Runtao; Zhang, Chengjin; Zhang, Lina; Gao, Rui
作者机构:[Yang, Runtao; Zhang, Chengjin; Zhang, Lina] Shandong Univ Weihai, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China.; [Zhang, Chengjin 更多
通讯作者:Zhang, CJ;Zhang, CJ
通讯作者地址:[Zhang, CJ]Shandong Univ Weihai, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China;[Zhang, CJ]Shandong Univ, Sch Control Sci & Engn, Jina 更多
来源:BIOMED RESEARCH INTERNATIONAL
出版年:2018
DOI:10.1155/2018/9364182
摘要:Cancerlectins have an inhibitory effect on the growth of cancer cells and are currently being employed as therapeutic agents. The accurate identification of the cancerlectins should provide insight into the molecular mechanisms of cancers. In this study, a new computational method based on the RF (Random Forest) algorithm is proposed for further improving the performance of identifying cancerlectins. Hybrid feature space before feature selection is developed by combining different individual feature spaces, CTD (Composition, Transition, and Distribution), PseAAC (Pseudo Amino Acid Composition), PSSM (Position-Specific Scoring Matrix), and disorder. The SMOTE (Synthetic Minority Oversampling Technique) is applied to solve the imbalanced data problem. To reduce feature redundancy and computation complexity, we propose a two-step feature selection process to select informative features. A 5-fold cross-validation technique is used for the evaluation of various prediction strategies. The proposed method achieves a sensitivity of 0.779, a specificity of 0.717, an accuracy of 0.748, and anMCC (Matthew's Correlation Coefficient) of 0.497. The prediction results are also compared with other existing methods on the same dataset using 5-fold cross-validation. The comparison results demonstrate the high effectiveness of our method for predicting cancerlectins.
收录类别:SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042469977&doi=10.1155%2f2018%2f9364182&partnerID=40&md5=a1846410bb73475acf6c0a78f4ffc47a
TOP