标题:Maximum modulus principle estimates for one dimensional fractional diffusion equation
作者:Zhu Lin; Rui Hong-xing
作者机构:[Zhu, L] School of Mathematics and Computer Science, Ningxia University, Yinchuan, 750021, China;[ Rui, H.-X] School of Mathematics, Shandong Universi 更多
通讯作者:Rui, HX(hxrui@sdu.edu.cn)
通讯作者地址:[Rui, HX]Shandong Univ, Sch Math, Jinan 250100, Peoples R China.
来源:高校应用数学学报B辑
出版年:2015
卷:30
期:4
页码:466-478
DOI:10.1007/s11766-015-3316-5
关键词:the maximum modulus principle;the Grünwald approximation;finite difference scheme;fractional diffusion equation;numerical analysis
摘要:We present scheme I for solving one-dimensional fractional diffusion equation with variable coefficients based on the maximum modulus principle and two Grunwald approximations. Scheme II is obtained by using classic Crank-Nicolson approximations in order to improve the time convergence. Schemes are proved to be unconditionally stable and second-order accuracy in spatial grid size for the problem with order of fractional derivative belonging to [(root 17-1)/2,2] using the maximum modulus principle. A numerical example is given to confirm the theoretical analysis result.
收录类别:CSCD;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84950317250&doi=10.1007%2fs11766-015-3316-5&partnerID=40&md5=5f22bcf861850f39080c9bef779e1e95
TOP