标题:QUASI-PERIODIC SOLUTIONS OF NONLINEAR BEAM EQUATIONS WITH QUINTIC QUASI-PERIODIC NONLINEARITIES
作者:Tuo, Qiuju; Si, Jianguo
作者机构:[Tuo, Qiuju; Si, Jianguo] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.; [Tuo, Qiuju] Shandong Univ Finance & Econ, Sch Math & Q 更多
通讯作者:Tuo, QJ
通讯作者地址:[Tuo, QJ]Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.
来源:ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS
出版年:2015
页码:1-20
关键词:Infinite dimensional Hamiltonian systems; KAM theory
摘要:In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities; u(ll) + u(xxxx) + (B + epsilon phi(t))u(5) = 0; under periodic boundary conditions, where B is a positive constant, epsilon is a small positive parameter, phi(t) is a real analytic quasi-periodic function in t with frequency vector w = (w(1),w(2,)...,w(m)). It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.
收录类别:SCOPUS;SCIE
Scopus被引频次:1
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920509023&partnerID=40&md5=8e605b1bf2b2f27bfdc014846773f43a
TOP