标题:An Integrated Method for Condition Monitoring of Rotating Machines
作者:Chen, Guangyuan; Lu, Guoliang; Yan, Peng
通讯作者:Lu, GL
作者机构:[Chen, Guangyuan; Lu, Guoliang; Yan, Peng] Shandong Univ, Key Lab High Efficiency & Clean Mech Mfg MOE, Natl Demonstrat Ctr Expt Mech Engn Educ, Sch M 更多
会议名称:Prognostics and System Health Management Conference (PHM-Chongqing)
会议日期:OCT 26-28, 2018
来源:2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018)
出版年:2018
页码:144-149
DOI:10.1109/PHM-Chongqing.2018.00031
关键词:condition monitoring; rotating machine; one-class SVM; ARIMA model
摘要:The task of this paper is to detect the structural changes in machine status, such that those abnormal and unexpected running behaviors for the considered machine can be found and localized during its successive operations. To accomplish a task of this kind, we propose a new method by integration of the autoregressive integrated moving average model (ARIMA) and one-class SVM. The ARIMA model has been introduced and adopted for this problem in a previous work, where parameters in the model are somewhat difficult to estimate. In this paper, we propose to use the one-class SVM for the ARIMA model identification. This replacement can take advantage of machine learning method to learn a more reliable and more accurate model; meanwhile, it uses an unsupervised manner to detect the potential change which makes it different from other existing integrated methods that require massive samples to accomplish a prior model training. We conducted experiments based on an experimental setup. Results along with comparisons with representative methods demonstrated the effectiveness and propriety of the proposed method in real engineering applications.
收录类别:CPCI-S
资源类型:会议论文
TOP