标题:The load characteristics classification and synthesis of substations in large area power grid
作者:Wang, Zhenshu; Bian, Shaorun; Liu, Yan; Liu, Zhonghui
作者机构:[Wang, Zhenshu; Bian, Shaorun; Liu, Yan] Shandong Univ, Key Lab Power Syst Intelligent Dispatch & Control, Minist Educ, Jinan 250061, Peoples R China. 更多
通讯作者:Wang, Z
通讯作者地址:[Wang, ZS]Shandong Univ, Key Lab Power Syst Intelligent Dispatch & Control, Minist Educ, Jinan 250061, Peoples R China.
来源:INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
出版年:2013
卷:48
期:1
页码:71-82
DOI:10.1016/j.ijepes.2012.11.032
关键词:SOM neural network; Load characteristics classification and synthesis;; Load modeling; Power substation
摘要:It is very difficult to build load model for every substation since there are numerous substations in large area power grid. A practical method is to classify the substations into several classes, pick out a typical substation from each class and build its load model, then generalize it to other substations of the same class. In this paper, a new method based on SUM (Self-Organization Map) neural network is presented for load characteristics classification and synthesis of substations in large area power grid. SUM neural network is a clustering method with self-organizing characteristics and mapping capability that can classify different input patterns automatically. Besides, the trained SUM neural network can discriminate the new input pattern conveniently without retraining. Therefore, the new substations can be discriminated with the existing classification result unchanged. The effectiveness of the proposed method is verified by a simulation of 183 220 kV substations in Shandong power grid using MATLAB Neural Network Toolbox. At first, the load composition rate in each substation is chosen as the feature vector, then SUM neural network is introduced to the classification and synthesis of the load characteristics of substations. At last, the synthetic load characteristic of each class is derived from the cluster center. The result is satisfactory since the method not only decreases the randomness and subjectivity of the load characteristic classification and synthesis of substations, but also improves the effectiveness and efficiency of load modeling. The method offers a new way for practical load modeling. (C) 2012 Elsevier Ltd. All rights reserved.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:11
Scopus被引频次:16
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872168162&doi=10.1016%2fj.ijepes.2012.11.032&partnerID=40&md5=cbaa3f14b81ab1b5439a3700df6f4621
TOP