标题:Stress analysis in scratching of anisotropic single-crystal silicon carbide
作者:Wang, Peizhi; Ge, Peiqi; Bi, Wenbo; Liu, Tengyun; Gao, Yufei
作者机构:[Wang, Peizhi; Ge, Peiqi; Bi, Wenbo; Liu, Tengyun; Gao, Yufei] Shandong Univ, Sch Mech Engn, Jinan 250061, Shandong, Peoples R China.; [Ge, Peiqi; B 更多
通讯作者:Ge, Peiqi
通讯作者地址:[Ge, PQ; Bi, WB]Shandong Univ, Sch Mech Engn, Jinan 250061, Shandong, Peoples R China.
来源:INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
出版年:2018
卷:141
页码:1-8
DOI:10.1016/j.ijmecsci.2018.03.042
关键词:Stress field; Scratch test; Single-crystal silicon carbide; Median crack
摘要:An expression for the stress distribution around an indenter in scratching of anisotropic single-crystal silicon carbide is derived by the superposition of the elastic stress field and residual stress field. It is an extension of isotropic materials. The elastic stress field can be obtained from the solutions of a point force problem in semi-infinite anisotropic materials using Green's function method. The calculation of residual field due to plastic deformation adopts a center of dilatation model. The plastic deformation zone beneath the indenter is simplified to a hemisphere based on the crystal-plasticity theory for single-crystal silicon carbide. The dilatation of the hemispherical plastic zone attached on the free surface of a semi-infinite solid is solved by a doublet force system. The values of stresses obtained from this calculation method match well with those calculated using classical solutions when the problem degenerates into isotropic materials. In addition, the stress field when scratching on the (0001) plane of 4H-SiC with a conical diamond indenter is presented using the new calculation method. In previous studies, the 4H-SiC was usually simplified as isotropic materials. However, it is found that the values of tensile stresses along the c-axis leading to median cracks are 1.4 times higher than those in isotropic materials. Therefore, it is not appropriate to simplify the single-crystal silicon carbide as an isotropic material when analyzing the scratching-induced stress field.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044966023&doi=10.1016%2fj.ijmecsci.2018.03.042&partnerID=40&md5=9685669c8c5dca91aa7b4a9a37bf07a9
TOP