标题:High-Efficiency Catalytic Conversion of NOx by the Synergy of Nanocatalyst and Plasma: Effect of Mn-Based Bimetallic Active Species
作者:Gao, Yan; Jiang, Wenchao; Luan, Tao; Li, Hui; Zhang, Wenke; Feng, Wenchen; Jiang, Haolin
作者机构:[Gao, Yan; Jiang, Wenchao; Li, Hui; Zhang, Wenke] Shandong Jianzhu Univ, Dept Thermal Engn, Jinan 250101, Shandong, Peoples R China.; [Gao, Yan; Li, 更多
通讯作者:Gao, Y;Gao, Y;Gao, Y;Luan, T
通讯作者地址:[Gao, Y]Shandong Jianzhu Univ, Dept Thermal Engn, Jinan 250101, Shandong, Peoples R China;[Gao, Y]Shandong Jianzhu Univ, Key Lab Renewable Energy Bldg 更多
来源:CATALYSTS
出版年:2019
卷:9
期:1
DOI:10.3390/catal9010103
关键词:NOx; conversion; DBD plasma; Manganese; bimetal; nanocatalyst
摘要:Three typical Mn-based bimetallic nanocatalysts of Mn-Fe/TiO2, Mn-Co/TiO2, Mn-Ce/TiO2 were synthesized via the hydrothermal method to reveal the synergistic effects of dielectric barrier discharge (DBD) plasma and bimetallic nanocatalysts on NOx catalytic conversion. The plasma-catalyst hybrid catalysis was investigated compared with the catalytic effects of plasma alone and nanocatalyst alone. During the catalytic process of catalyst alone, the catalytic activities of all tested catalysts were lower than 20% at ambient temperature. While in the plasma-catalyst hybrid catalytic process, NOx conversion significantly improved with discharge energy enlarging. The maximum NOx conversion of about 99.5% achieved over Mn-Ce/TiO2 under discharge energy of 15 W.h/m(3) at ambient temperature. The reaction temperature had an inhibiting effect on plasma-catalyst hybrid catalysis. Among these three Mn-based bimetallic nanocatalysts, Mn-Ce/TiO2 displayed the optimal catalytic property with higher catalytic activity and superior selectivity in the plasma-catalyst hybrid catalytic process. Furthermore, the physicochemical properties of these three typical Mn-based bimetallic nanocatalysts were analyzed by N-2 adsorption, Transmission Electron Microscope (TEM), X-ray diffraction (XRD), H-2-temperature-programmed reduction (TPR), NH3-temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). The multiple characterizations demonstrated that the plasma-catalyst hybrid catalytic performance was highly dependent on the phase compositions. Mn-Ce/TiO2 nanocatalyst presented the optimal structure characteristic among all tested samples, with the largest surface area, the minished particle sizes, the reduced crystallinity, and the increased active components distributions. In the meantime, the ratios of Mn4+/(Mn2++ Mn3++ Mn4+) in the Mn-Ce/TiO2 sample was the highest, which was beneficial to plasma-catalyst hybrid catalysis. Generally, it was verified that the plasma-catalyst hybrid catalytic process with the Mn-based bimetallic nanocatalysts was an effective approach for high-efficiency catalytic conversion of NOx, especially at ambient temperature.
收录类别:SCOPUS;SCIE
WOS核心被引频次:2
Scopus被引频次:2
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060693847&doi=10.3390%2fcatal9010103&partnerID=40&md5=dcabbe89255b7d604a54f977d4c31243
TOP