标题:LBM study of aggregation of monosized spherical particles in homogeneous isotropic turbulence
作者:Wang, Guichao; Wan, Dongdong; Peng, Cheng; Liu, Ke; Wang, Lian-Ping
作者机构:[Wang, Guichao; Liu, Ke] Southern Univ Sci & Technol, SUSTech Acad Adv Interdisciplinary Studies, Shenzhen 518055, Peoples R China.; [Wan, Dongdong] 更多
通讯作者:Wang, LianPing;Wang, LP
通讯作者地址:[Wang, LP]Univ Delaware, Spencer Lab 126, Dept Mech Engn, Newark, DE 19716 USA.
来源:CHEMICAL ENGINEERING SCIENCE
出版年:2019
卷:201
页码:201-211
DOI:10.1016/j.ces.2019.03.004
关键词:Lattice Boltzmann method; Mono-sized spherical particles; Aggregation;; Turbulence
摘要:Direct numerical simulations of an aggregation system composed of monosized spherical particles in homogeneous isotropic turbulence have been performed using Lattice Boltzmann method (LBM). The effects of hydrodynamics on the aggregation process were considered by directly resolving the disturbance flows around finite-size solid particles using an interpolated bounce-back scheme. A nonuniform time-dependent large-scale stochastic forcing scheme was implemented within the mesoscopic multiple-relaxation-time LBM approach to maintain turbulence intensity at targeted levels. To simulate particle interactions, the non-contact surface force and the contact force were taken into account using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and the soft-sphere model, respectively. This interface-resolved direct numerical simulation (IR-DNS) combined with the well-known DLVO theory was employed to obtain an insight into the aggregation process of micron-size particles. Specifically, the model was used to study the effects of solid volume fraction on aggregate growth. Aggregates of larger sizes formed in local regions of higher concentration of particles due to higher encountering probability between particles. The effects of aggregating particles of different volume fractions on the statistically stationary homogeneous isotropic turbulent flow were investigated. It was found that the presence of particles attenuated the turbulent kinetic energy at large scales and augmented the kinetic energy at the small scales. This effect is more apparent with increasing volume concentration of particles. (C) 2019 Elsevier Ltd. All rights reserved.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062613120&doi=10.1016%2fj.ces.2019.03.004&partnerID=40&md5=abe726487af1796fdb69f15b0a0851fe
TOP