标题:Efficient spatial charge separation and transfer in ultrathin g-C3N4 nanosheets modified with Cu2MoS4 as a noble metal-free co-catalyst for superior visible light-driven photocatalytic water splitting
作者:Zou, Yajun; Shi, Jian-Wen; Ma, Dandan; Fan, Zhaoyang; He, Chi; Cheng, Linhao; Sun, Diankun; Li, Jun; Wang, Zeyan; Niu, Chunming
作者机构:[Zou, Yajun; Shi, Jian-Wen; Ma, Dandan; Fan, Zhaoyang; Cheng, Linhao; Sun, Diankun; Li, Jun; Niu, Chunming] Xi An Jiao Tong Univ, Sch Elect Engn, Ctr 更多
通讯作者:Shi, JianWen;Shi, JW;Shi, JW
通讯作者地址:[Shi, JW]Xi An Jiao Tong Univ, Sch Elect Engn, Ctr Nanomat Renewable Energy, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shaanxi, Peop 更多
来源:CATALYSIS SCIENCE & TECHNOLOGY
出版年:2018
卷:8
期:15
页码:3883-3893
DOI:10.1039/c8cy00898a
摘要:Developing photocatalysts with efficient spatial charge separation and transfer as well as a high ligh-tharvesting ability remains a key challenge. Here, we report a facile in situ process to decorate ultrathin g-C3N4 nanosheets (NSs) with a co-catalyst, Cu2MoS4, for photocatalytic water splitting. The as-obtained Cu2MoS4/g-C3N4 exhibits a superior photocatalytic H-2 evolution rate of 2170.5 mu mol h(-1) g(-1) under visible light irradiation, which is nearly 677 and 34 times higher than that of bulk g-C3N4 and g-C3N4 NSs, respectively, and far exceeds that of most g-C3N4 catalysts modified with other sulphide co-catalysts reported in the literature, demonstrating that Cu2MoS4 can serve as a promising non-noble metal co-catalyst to couple with g-C3N4 for highly efficient photocatalysts. Structural characterization confirms the well-defined morphology of Cu2MoS4/g-C3N4 in which Cu2MoS4 hollow spheres are uniformly attached on the ultrathin g-C3N4 NSs with numerous micropores and vacancies. The optical properties indicate that Cu2MoS4/gC(3)N(4) possesses a superb visible light absorption ability. The photoluminescence spectra, photocurrent response, and electrochemical impedance spectra combine to prove the highly efficient separation and migration of photogenerated electrons and holes. All these factors synergistically enhance the photocatalytic activity of Cu2MoS4/g-C3N4 for photocatalytic water splitting, providing new insights into the rational design of high-performance visible light-driven photocatalysts based on earth-abundant elements.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051147201&doi=10.1039%2fc8cy00898a&partnerID=40&md5=5134ee12f6f23139773b858cd371b9a9
TOP