标题:Online Data Organizer: Micro-Video Categorization by Structure-Guided Multimodal Dictionary Learning
作者:Liu, Meng; Nie, Liqiang; Wang, Xiang; Tian, Qi; Chen, Baoquan
作者机构:[Liu, Meng; Nie, Liqiang] Shandong Univ, Sch Comp Sci & Technol, Qingdao 266000, Peoples R China.; [Wang, Xiang] Natl Univ Singapore, Sch Comp, Sing 更多
通讯作者:Nie, Liqiang;Nie, LQ
通讯作者地址:[Nie, LQ]Shandong Univ, Sch Comp Sci & Technol, Qingdao 266000, Peoples R China.
来源:IEEE TRANSACTIONS ON IMAGE PROCESSING
出版年:2019
卷:28
期:3
页码:1235-1247
DOI:10.1109/TIP.2018.2875363
关键词:Micro-video organization; tree-guided constraints; multi-modal; dictionary learning; online learning
摘要:Micro-videos have rapidly become one of the most dominant trends in the era of social media. Accordingly, how to organize them draws our attention. Distinct from the traditional long videos that would have multi-site scenes and tolerate the hysteresis, a micro-video: 1) usually records contents at one specific venue within a few seconds. The venues are structured hierarchically regarding their category granularity. This motivates us to organize the micro-videos via their venue structure. 2) timely circulates over social networks. Thus, the timeliness of micro-videos desires effective online processing. However, only 1.22% of micro-videos are labeled with venue information when uploaded at the mobile end. To address this problem, we present a framework to organize the micro-videos online. In particular, we first build a structure-guided multi-modal dictionary learning model to learn the concept-level micro-video representation by jointly considering their venue structure and modality relatedness. We then develop an online learning algorithm to incrementally and efficiently strengthen our model, as well as categorize the micro-videos into a tree structure. Extensive experiments on a real-world data set validate our model well. In addition, we have released the codes to facilitate the research in the community.
收录类别:EI;SCOPUS;SCIE
Scopus被引频次:4
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054623398&doi=10.1109%2fTIP.2018.2875363&partnerID=40&md5=039b2661cd5eab6e7fd20f6a772f903b
TOP