标题:Parameter estimation for chaotic systems via a hybrid flower pollination algorithm
作者:Xu, Shuhui; Wang, Yong; Liu, Xue
作者机构:[Xu, Shuhui; Wang, Yong; Liu, Xue] Shandong Univ, Sch Mech Engn, Jinan 250061, Shandong, Peoples R China.; [Xu, Shuhui; Wang, Yong; Liu, Xue] Shando 更多
通讯作者:Wang, Y;Wang, Y;Wang, Yong
通讯作者地址:[Wang, Y]Shandong Univ, Sch Mech Engn, Jinan 250061, Shandong, Peoples R China;[Wang, Y]Shandong Univ, Minist Educ, Key Lab High Efficiency & Clean Me 更多
来源:NEURAL COMPUTING & APPLICATIONS
出版年:2018
卷:30
期:8
页码:2607-2623
DOI:10.1007/s00521-017-2890-2
关键词:Chaotic systems; Flower pollination algorithm; Nelder-Mead simplex; method; Parameter estimation
摘要:Parameter estimation is a fundamental research issue which has attracted great concern in the control and synchronization of chaotic systems. This problem can be mathematically described as a multi-dimensional continuous optimization problem through constructing an appropriate fitness function, and then solved via meta-heuristic algorithms. A hybrid flower pollination algorithm is proposed in this paper for solving this problem more efficiently. The proposed algorithm well combines the good global exploration ability of the original flower pollination algorithm and the powerful local exploitation ability of the Nelder-Mead simplex method together by integrating these two methods in a very simple way. The experimental results tested on three typical chaotic system parameter estimation problems with three unknown system parameters, including the Lorenz system, the Rossler system, and the Lorenz system under the noise condition, demonstrate that the algorithm can estimate the unknown parameters efficiently and accurately. The comparisons with the basic flower pollination algorithm and some other four reported methods including the quantum particle swarm optimization, the hybrid adaptive cuckoo search optimization algorithm, the oppositional backtracking search optimization algorithm, and the hybrid algorithm combining differential evolution with artificial bee colony suggest that the proposed algorithm is energy efficient and superior. The proposed algorithm can be used as a new and effective choice for parameter estimation of chaotic systems.
收录类别:EI;SCIE
WOS核心被引频次:1
资源类型:期刊论文
TOP