标题:Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption
作者:Xiao, Longfei; Yang, Xianglong; Duan, Peng; Xu, Huayong; Chen, Xiufang; Hu, Xiaobo; Peng, Yan; Xu, Xiangang
作者机构:[Xiao, Longfei; Yang, Xianglong; Duan, Peng; Chen, Xiufang; Hu, Xiaobo; Peng, Yan; Xu, Xiangang] Shandong Univ, State Key Lab Crystal Mat, Jinan 25010 更多
通讯作者:Xu, Xiangang
通讯作者地址:[Xu, XG]Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China.
来源:APPLIED OPTICS
出版年:2018
卷:57
期:11
页码:2804-2808
DOI:10.1364/AO.57.002804
摘要:High-power photoconductive semiconductor switching devices were fabricated from a high-purity, semi-insulating 4H-SiC wafer. A highly n-doped GaN subcontact layer was inserted between the contact metal and the high-resistivity SiC wafer. The minimum ON-state resistance of the device was less than 1 ohm when the energy of a 355 nm laser was 10.5 mJ with a bias voltage of 6 kV. The maximum device lifetime is 3151 pulses, after which the device completely fails. The failure mechanisms are determined using several analysis methods. Under a strong electric field, the failure mechanism differs for the two electrodes. Near the edge of the anode electrode, the switch is damaged due to the thermal stress caused by impact ionization. At the edge of the cathode electrode, the electrode erosion is the main reason for the failure to operate for long periods of time. These two different damage mechanisms are both important factors influencing the device performance. The electron avalanche breakdown at the edge of the anode electrode causes the formation of cracks between the electrodes, which is the root cause of the switch failure. (C) 2018 Optical Society of America
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045133095&doi=10.1364%2fAO.57.002804&partnerID=40&md5=0aa35a6527942e34b1ee3e4a4d05a416
TOP