标题:Non-fragile L-2 - L-infinity synchronization for chaotic time-delay neural networks with semi-Markovian jump parameters
作者:Zhou, Youmei; Wang, Yuan; Kong, Qingkai; Zhou, Jianping; Wang, Zhen
作者机构:[Zhou, Youmei; Wang, Yuan; Zhou, Jianping] Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan 243032, Peoples R China.; [Kong, Qingkai] Anhui Univ 更多
通讯作者:Zhou, JP;Zhou, JP
通讯作者地址:[Zhou, JP]Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan 243032, Peoples R China;[Zhou, JP]Anhui Univ Technol, Res Inst Informat Technol, Maansh 更多
来源:PHYSICA SCRIPTA
出版年:2020
卷:95
期:3
DOI:10.1088/1402-4896/ab4924
关键词:chaos; time delay; semi-Markovian process; non-fragile control;; synchronization; neural networks
摘要:The issue of the non-fragile L-2 - L-infinity synchronization for chaotic time-delay neural networks subject to semi-Markovian jump parameters is addressed in this paper. Unlike the Markovian jump process, the sojourn time of the semi-Markovian jump process allows to be non-exponential distributed and the transition rate allows to be time-varying. By utilizing the discretized Lyapunov-Krasovskii functional method and introducing two free-weighting matrices, a sufficient condition is proposed to ensure the synchronization error system to be stochastically stable with an L2 - L-infinity performance index. Then, by means of a matrix congruence transformation and some inequality techniques, an approach to the non-fragile L2 - L-infinity controller design is developed. Finally, two illustrative examples are employed to show the usefulness of the proposed results.
收录类别:SCIE
资源类型:期刊论文
TOP