标题:MoSe2 nanosheet/MoO2 nanobelt/carbon nanotube membrane as flexible and multifunctional electrodes for full water splitting in acidic electrolyte
作者:Yang, L. J.; Deng, Y. Q.; Zhang, X. F.; Liu, H.; Zhou, W. J.
作者机构:[Yang, L. J.; Liu, H.; Zhou, W. J.] Univ Jinan, IAIR, Jinan 250022, Shandong, Peoples R China.; [Yang, L. J.; Deng, Y. Q.; Zhou, W. J.] South China 更多
通讯作者:Liu, H
通讯作者地址:[Liu, H; Zhou, WJ]Univ Jinan, IAIR, Jinan 250022, Shandong, Peoples R China;[Zhou, WJ]South China Univ Technol, Guangzhou Higher Educ Mega Ctr, Guangz 更多
来源:NANOSCALE
出版年:2018
卷:10
期:19
页码:9268-9275
DOI:10.1039/c8nr01572d
摘要:Acid-stable and efficient hydrogen evolution reaction (HER) catalysts have been widely reported. However, achieving full water splitting catalysis in acidic electrolytes is still an urgent task due to the lack of efficient, abundant and acid-stable oxygen evolution reaction (OER) catalysts. This rationally designed MoSe2 nanosheet/MoO2 nanobelt/carbon nanotube membrane (MoSe2 NS/MoO2 NB/CNT-M) is composed of highly conductive CNTs and hierarchical MoSe2 nanosheets on MoO2 nanobelts, and due to its flexible three-dimensional (3D) electrodes, possesses an open architecture for rapid ion/electron diffusion, maximising the exposure of its active sites. The MoSe2 NS/MoO2 NB/CNT-M achieved remarkable electrocatalytic performance for the HER, providing a geometrical current density of 1 mA cm(-2) at an onset potential of -23 mV vs. RHE, a small Tafel slope (69.4 mV dec(-1)) and excellent long-cycle stability in 0.5 M H2SO4. More importantly, the obtained multifunctional electrodes delivered excellent electrocatalytic activity towards the OER under acidic conditions, with a very small onset potential (approximate to 1.43 V vs. RHE) and enhanced long-cycle durability. The two-electrode electrolyzer, composed of a MoSe2 NS/MoO2 NB/CNT-M both as an anode and a cathode, required a small voltage of 1.63 V to achieve 10 mA cm(-2) and improved electrocatalytic durability, which was better than that of an electrolyzer composed of RuO2//20 wt% Pt/C. This work highlights the potential for active and abundant non-precious catalysts for full water splitting in acidic electrolytes.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047255158&doi=10.1039%2fc8nr01572d&partnerID=40&md5=2959c3c2f9fc7c86d06209347a6e701d
TOP