标题:Multi-Modal Joint Clustering With Application for Unsupervised Attribute Discovery
作者:Liu, Liangchen; Nie, Feiping; Wiliem, Arnold; Li, Zhihui; Zhang, Teng; Lovell, Brian C.
作者机构:[Liu, Liangchen; Wiliem, Arnold; Zhang, Teng; Lovell, Brian C.] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia.; 更多
通讯作者:Nie, Feiping
通讯作者地址:[Nie, FP]Northwestern Polytech Univ, Sch Comp Sci, Ctr Opt Imagery Anal & Learning, Xian 710072, Shaanxi, Peoples R China.
来源:IEEE TRANSACTIONS ON IMAGE PROCESSING
出版年:2018
卷:27
期:9
页码:4345-4356
DOI:10.1109/TIP.2018.2831454
关键词:Image clustering; unsupervised automatic attribute discovery; attribute;; unsupervised
摘要:Utilizing multiple descriptions/views of an object is often useful in image clustering tasks. Despite many works that have been proposed to effectively cluster multi-view data, there are still unaddressed problems such as the errors introduced by the traditional spectral-based clustering methods due to the two disjoint stages: 1) eigendecomposition and 2) the discretization of new representations. In this paper, we propose a unified clustering framework which jointly learns the two stages together as well as utilizing multiple descriptions of the data. More specifically, two learning methods from this framework are proposed: 1) through a graph construction from different views and 2) through combining multiple graphs. Furthermore, benefiting from the separability and local graph preserving properties of the proposed methods, a novel unsupervised automatic attribute discovery method is proposed. We validate the efficacy of our methods on five data sets, showing that the proposed joint learning clustering methods outperform the recent state-of-the-art methods. We also show that it is possible to derive a novel method to address the unsupervised automatic attribute discovery tasks.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046343116&doi=10.1109%2fTIP.2018.2831454&partnerID=40&md5=25b930f1ea6b8f9bbe2ace81280ad548
TOP