标题:On the global well-posedness for the 2D Euler-Boussinesq system
作者:Xu, Fuyi; Yuan, Jia
作者机构:[Xu, Fuyi] Shandong Univ Technol, Sch Sci, Zibo 255049, Shandong, Peoples R China.; [Yuan, Jia] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, P 更多
通讯作者:Xu, F
通讯作者地址:[Xu, FY]Shandong Univ Technol, Sch Sci, Zibo 255049, Shandong, Peoples R China.
来源:NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS
出版年:2014
卷:17
期:1
页码:137-146
DOI:10.1016/j.nonrwa.2013.11.001
摘要:This paper is dedicated to the study of the Cauchy problem for the 2D Euler-Boussinesq system. We obtain the global existence of a unique solution for this system without any smallness conditions imposed on the data. In particular, we prove the uniqueness of the system with nondecaying initial vorticity at infinity. Our methods mainly rely upon loss of regularity estimate and Bony's paraproduct. (C) 2013 Elsevier Ltd. All rights reserved.
收录类别:EI;SCIE
WOS核心被引频次:7
资源类型:期刊论文
TOP